cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A376508 Natural numbers whose iterated squaring modulo 100 eventually enters the 4-cycle 16, 56, 36, 96.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 22, 28, 34, 36, 38, 42, 44, 46, 48, 52, 54, 56, 58, 62, 64, 66, 72, 78, 84, 86, 88, 92, 94, 96, 98, 102, 104, 106, 108, 112, 114, 116, 122, 128, 134, 136, 138, 142, 144, 146, 148, 152, 154, 156, 158, 162, 164, 166, 172, 178, 184, 186
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (this sequence) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 2, 2, 2, 4, 2, 2, 6, 6, 6, 2, 2, 4, 2, 2, 2, 4, ...

Examples

			2^2 = 4 -> 4^2 = 16 -> 16^2 = 56 -> 56^2 = 36 -> 36^2 = 96, 96^2 = 16 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

A376509 Natural numbers whose iterated squaring modulo 100 eventually enters the 4-cycle 21, 41, 81, 61.

Original entry on oeis.org

3, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 47, 53, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 103, 109, 111, 113, 117, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 147, 153, 159, 161, 163, 167, 169, 171, 173, 177, 179, 181
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (this sequence).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 6, ...

Examples

			3^2 = 9 -> 9^2 = 81 -> 81^2 = 61 -> 61^2 = 21 -> 21^2 = 41 -> 41^2 = 81 -> ... (mod 100)
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

A017330 a(n) = (10*n + 5)^2.

Original entry on oeis.org

25, 225, 625, 1225, 2025, 3025, 4225, 5625, 7225, 9025, 11025, 13225, 15625, 18225, 21025, 24025, 27225, 30625, 34225, 38025, 42025, 46225, 50625, 55225, 60025, 65025, 70225, 75625, 81225, 87025, 93025, 99225, 105625, 112225, 119025, 126025, 133225, 140625
Offset: 0

Views

Author

Keywords

Comments

This is an old school trick which says that a square of an integer that ends with 5 is easy to compute. Remove the 5, multiply the remaining number by (itself + 1), and concatenate 25 at the end. So, a(n)\100 = A002378(n). - Michel Marcus, Dec 23 2013

Examples

			5^2 = 25;
15^2 = (1 * 2) concatenate 25 = 225;
25^2 = (2 * 3) concatenate 25 = 625;
35^2 = (3 * 4) concatenate 25 = 1225;
45^2 = (4 * 5) concatenate 25 = 2025;
55^2 = (5 * 6) concatenate 25 = 3025;
65^2 = (6 * 7) concatenate 25 = 4225, etc.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 136.

Crossrefs

Programs

Formula

G.f.: -25*(x^2 + 6*x + 1)/(x - 1)^3. - Colin Barker, Nov 14 2012
a(n) = A017329(n)^2. - Michel Marcus, Dec 23 2013
a(0) = 25, a(n) = a(n - 1) + 200*n. - Alonso del Arte, Feb 25 2020
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = 5^2 * A016754(n).
Sum_{n>=0} 1/a(n) = Pi^2/200.
Sum_{n>=0} (-1)^n/a(n) = G/25, where G is Catalan's constant (A006752). (End)
E.g.f.: 25*exp(x)*(1 + 8*x + 4*x^2). - Stefano Spezia, Aug 04 2024

Extensions

More terms from Michel Marcus, Dec 23 2013

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005

A260181 Numbers whose last digit is prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2015

Keywords

Comments

Numbers ending in 2, 3, 5 or 7.
The subsequence of primes is A042993. - Michel Marcus, Jul 19 2015
From Wesley Ivan Hurt, Aug 15 2015, Sep 26 2015: (Start)
Ceiling(a(n)/2) = A047201(n).
Complement of (A197652 Union A262389). (End)

Crossrefs

Cf. A042993, A047201, A092620, subset of A118950.
Union of A017293, A017305, A017329 and A017353.
First differences are [1,2,2,5,...] = A002522(A140081(n-1)).

Programs

  • GAP
    a:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2; List([1..60],n->a(n)); # Muniru A Asiru, Feb 16 2018
  • Magma
    [(5*n-4-(-1)^n+((3-(-1)^n) div 2)*(-1)^((2*n+5-(-1)^n) div 4))/2: n in [1..70]]; // Vincenzo Librandi, Jul 18 2015
    
  • Maple
    A260181:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2: seq(A260181(n), n=1..100);
  • Mathematica
    CoefficientList[Series[(2 + x + 2 x^2 + 2 x^3 + 3 x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 5, 7, 12}, 60] (* Vincenzo Librandi, Jul 18 2015 *)
    Table[(5n - 4 - (-1)^n + ((3 - (-1)^n)/2)*(-1)^((2*n + 5 - (-1)^n)/4))/2, {n, 100}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    is(n)=my(m=digits(n));isprime(m[#m]) \\ Anders Hellström, Jul 19 2015
    
  • PARI
    A260181(n)=(n--)\4*10+prime(n%4+1) \\ is(n)=isprime(n%10) is much more efficient than the above. - M. F. Hasler, Sep 16 2016
    

Formula

G.f.: x*(2+x+2*x^2+2*x^3+3*x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5), n>5.
a(n) = (5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(5*sqrt(5+2*sqrt(5))) - 25*log(5) - 40*log(2) + 5*sqrt(5)*arccoth(843/2))/200. - Amiram Eldar, Jul 30 2024

A355305 Carmichael numbers ending in 5.

Original entry on oeis.org

1105, 2465, 10585, 62745, 278545, 449065, 825265, 1050985, 2531845, 3224065, 3664585, 5632705, 6054985, 9582145, 11119105, 12945745, 13187665, 13992265, 15403285, 21584305, 22665505, 28787185, 31692805, 36121345, 37354465, 39353665, 40280065, 41298985, 47006785, 60112885, 67371265, 74165065, 84417985
Offset: 1

Views

Author

Omar E. Pol, Jul 03 2022

Keywords

Crossrefs

Intersection of A002997 and A017329.

Programs

  • Mathematica
    Select[10*Range[0, 10^7] + 5, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 07 2022 *)
  • PARI
    Korselt(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    isok(n) = ((n%10)==5) && !isprime(n) && Korselt(n) && n>1; \\ Michel Marcus, Jul 07 2022; after A002997
    
  • Python
    from itertools import islice
    from sympy import factorint, nextprime
    def A355305_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for n in range(p+2+(-p+3)%10, q, 10):
                f = factorint(n)
                if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
                    yield n
            p, q = q, nextprime(q)
    A355305_list = list(islice(A355305_gen(),10)) # Chai Wah Wu, Jul 24 2022

A267541 Expansion of (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/(1 - x - x^5 + x^6).

Original entry on oeis.org

2, 6, 7, 8, 10, 13, 17, 18, 19, 21, 24, 28, 29, 30, 32, 35, 39, 40, 41, 43, 46, 50, 51, 52, 54, 57, 61, 62, 63, 65, 68, 72, 73, 74, 76, 79, 83, 84, 85, 87, 90, 94, 95, 96, 98, 101, 105, 106, 107, 109, 112, 116, 117, 118, 120, 123, 127, 128, 129, 131, 134, 138, 139, 140
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2016

Keywords

Comments

Also, numbers that are congruent to {2, 6, 7, 8, 10} mod 11.
(m^k+1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
. m is a member of A017509 and k is odd but not multiple of 5 (A045572).
If k is even, (m^k+1)/11 is never an integer.
The product of two terms does not belong to the sequence.

Examples

			From the linear recurrence:
(-A267755) ..., -12, -9, -5, -4, -3, -1, 2, 6, 7, 8, 10, 13, ... (A267541)
		

Crossrefs

Cf. A088225: numbers congruent to {2,6,7,8} mod 11.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)));
    
  • Maple
    gf := (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4)): deg := 64: series(gf,x,deg): seq(coeff(%,x,n), n=0..deg-1); # Peter Luschny, Jan 19 2016
  • Mathematica
    CoefficientList[Series[(2 + 4 x + x^2 + x^3 + 2 x^4 + x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {2, 6, 7, 8, 10, 13}, 70]
    Select[Range[150], MemberQ[{2, 6, 7, 8, 10}, Mod[#, 11]]&]
  • PARI
    Vec((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)+O(x^70))
    
  • Sage
    gf = (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4))
    print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 19 2016

Formula

G.f.: (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267755(n-1).

A275971 Numbers n such that the decimal digits of n^2 are all prime.

Original entry on oeis.org

5, 15, 85, 165, 235, 485, 1665, 1885, 4835, 5765, 7585, 15085, 15885, 16665, 18365, 18915, 22885, 27115, 27885, 50235, 57665, 58115, 72335, 85635, 87885, 150915, 166665, 182415, 194235, 194365, 229635, 240365, 268835, 503515, 507665, 524915, 568835, 570415, 577515, 581165
Offset: 1

Views

Author

Zak Seidov, Aug 15 2016

Keywords

Comments

Apparently 5, 235 and 72335 are the only terms using digits {2,3,5,7}.
a(n)/5 = {1, 3, 17, 33, 47, 97, 333, 377, 967, 1153, 1517, 3017, 3177, 3333, ...}; terms b(n) that have n 3's must be in the sequence since (5 b(n))^2 yields the decimal number 2 followed by (n-1) 7's then n 2's, and ending in 5 (i.e., 225, 27225, 2772225). Thus 5 b(n) = {15, 165, 1665, 16665, etc.} appears in this sequence. - Michael De Vlieger, Aug 15 2016
All terms are odd multiples of 5 (A017329), i.e., must end in 5, which is the only digit whose square ends in a prime digit. The sequence contains A030487 as an infinite proper subsequence which in turn contains all numbers of the form (5*10^n-5)/3 (these are the above 5 b(n)) as a proper subsequence. - M. F. Hasler, Sep 16 2016

Examples

			72335^2 = 5232352225 = A191486(23).
		

Crossrefs

Programs

  • Mathematica
    w = Boole@! PrimeQ@ # & /@ RotateLeft@ Range[0, 9]; Sqrt@ Select[Range[10^6]^2, Total@ Pick[DigitCount@ #, w, 1] == 0 &] (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    is(n)=#setintersect(Set(digits(n^2)), [0, 1, 4, 6, 8, 9])==0 \\ Charles R Greathouse IV, Sep 16 2016
    
  • Python
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        if set(str(k*k)) <= set("2357"): alst.append(k)
      return alst
    print(aupto(10**6)) # Michael S. Branicky, May 15 2021

Formula

a(n) = sqrt(A191486(n)).

Extensions

More terms from Michel Marcus, Aug 17 2016

A323288 Largest number that can be obtained from the "Choix de Bruxelles", version 2 (A323460) operation applied to n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 110, 112, 114, 116, 118, 40, 42, 44, 46, 48, 210, 212, 214, 216, 218, 60, 62, 64, 66, 68, 310, 312, 314, 316, 318, 80, 82, 84, 86, 88, 410, 412, 414, 416, 418, 100, 102, 104, 106, 108, 510, 512, 514, 516, 518
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2019

Keywords

Comments

Equally, this is the largest number that can be obtained from the "Choix de Bruxelles", version 1 (A323286) operation applied to n.
Maximal element in row n of irregular triangle in A323460 (or, equally, A323286).
Conjecture: If n contains no digit >= 5, then a(n) = 2*n; otherwise, a(n) is obtained from n by doubling the substring from the last digit >= 5 to the last digit. - Charlie Neder, Jan 19 2019. (This is true. - N. J. A. Sloane, Jan 22 2019)
Corollary: a(n)/n < 10 for all n, and a(n) = 10 - 1/k + O(1/k^2) for n = 10*k+5. - N. J. A. Sloane, Jan 23 2019
The high-water marks for a(n)/n occur at n = 1,15,25,35,45,..., cf. A017329. - N. J. A. Sloane, Jan 23 2019

Crossrefs

Programs

  • PARI
    a(n, base=10) = { my (d=digits(n, base), v=2*n); for (w=1, #d, for (l=0, #d-w, if (d[l+1], my (h=d[1..l], m=fromdigits(d[l+1..l+w], base), t=d[l+w+1..#d]); v = max(v, fromdigits(concat([h,digits(m*2,base),t]), base))))); v } \\ Rémy Sigrist, Jan 15 2019
    
  • Python
    def a(n):
        s, out = str(n), {n}
        for l in range(1, len(s)+1):
            for i in range(len(s)+1-l):
                if s[i] == '0': continue
                t = int(s[i:i+l])
                out.add(int(s[:i] + str(2*t) + s[i+l:]))
                if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
        return max(out)
    print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jul 24 2022

Formula

a(n) >= 2*n. - Rémy Sigrist, Jan 15 2019

Extensions

More terms from Rémy Sigrist, Jan 15 2019

A337940 Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1

Views

Author

Wolfdieter Lang, Nov 23 2020

Keywords

Comments

This number triangle results from the array A(n, m) = T(n+m+1) - T(n-1), with T = A000217, for n, m >= 1. For this array see the example by Bob Selcoe, in A111774 (but with rows continued). The present triangle is obtained by reading the array by upwards antidiagonals: T(n, k) = A(n+1-k, k). See also the Jul 09 2019 comment by Ralf Steiner with the formula c_k(n) (rows k >= 1, columns n >= 3), rewritten for A(n, m) = (m+2)*(2*n+m+1)/2, leading to T(n, k) = (k+2)*(2*n-k+3)/2.
Therefore this triangle is related to the problem of giving the numbers which are sums of at least three consecutive positive integers given as sequence A111774. It allows us to find the multiplicities for the numbers of A111774. They are given in A338428(n).
To obtain the multiplicity for number N (>= 6) from A111774 one has to consider only the triangle rows n = 1, 2, ..., floor((N-3)/3).
The row reversed triangle, considered by Bob Selcoe in A111774, is T(n, n-k+1) = T(n+2) - T(k-1), for n >= 1, and k=1, 2, ..., n.
This triangle contains no odd prime numbers and no exact powers 2^m, for m >= 0. This can be seen by considering the diagonal sequences D(d, k), for d >= 1, k >= 1 or the row sequences of the array A(n, m), for n >= 1 and m >= 1. The result is A(r+1, s-2) = s*(s + 2*r + 1)/2, for r >= 0 and s >= 3 (from the g.f. of the diagonals of T given below). This is also given in the Jul 09 2019 comment by Ralf Steiner in A111774. Therefore A(r+1, s-2) is a product of two numbers >= 2, hence not a prime. And in both cases (i) s/2 integer or (ii) (s + 2*r + 1)/2 integer not both numbers can be powers of 2 by simple parity arguments.
The previous comment means that each T(n, k) has at least one odd prime as a proper divisor.
A number N appears in this triangle, or in A111774, if and only if floor(N/2) - delta(N) >= 1, where delta(N) = A055034(N). For the sequence b(n) := floor(n/2) - delta(n), for n >= 2, see A219839(n), b(1) = -1. See a W. Lang comment in A111774 for the proof.

Examples

			The triangle T(n, k) begins:
n \ k  1  2  3  4  5   6   7   8   9  10  11  12  13  14  15 ...
1:     6
2:     9 10
3:    12 14 15
4:    15 18 20 21
5:    18 22 25 27 28
6:    21 26 30 33 35  36
7:    24 30 35 39 42  44  45
8:    27 34 40 45 49  52  54  55
9:    30 38 45 51 56  60  63  65  66
10:   33 42 50 57 63  68  72  75  77  78
11:   36 46 55 63 70  76  81  85  88  90  91
12:   39 50 60 69 77  84  90  95  99 102 104 105
13:   42 54 65 75 84  92  99 105 110 114 117 119 120
14:   45 58 70 81 91 100 108 115 121 126 130 133 135 136
15:   48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
		

Crossrefs

Cf. A055034, A111774, A338428 (multiplicities), A219839.
For columns k = 1, 2, ..., 10 see A008585, A016825, A008587, A016945, A008589, A017113, A008591, A017329, A008593, A017593.
For diagonals d = 1, 2, ..., 10 see A000217, A000096, A055998, A055999, A056000, A056115, A056119 , A056121, A056126, A051942.

Programs

  • Mathematica
    Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)

Formula

T(n, k) = ((n+2)*(n+3) - (n-k)*(n-k+1))/2, for n >= 1 and k = 1, 2, ..., n (see the name).
T(n, k) = (k+2)*(2*n-k+3)/2 (factorized).
G.f. columns k = 2*j+1, for j >= 0: Go(j, x) = x^(2*j+1)*(2*j+3)*(j+2 - (j+1)*x)/(1-x)^2,
G.f. columns k = 2*j, for j >= 1: Ge(j, x) = x^(2*j)*(j+1)*(2*j+3 - (2*j+1)*x)/(1-x)^2.
G.f. row polynomials: G(z,x) = z*x*(1 + z*x)^3*{3*(2-z) - (8-3*z)*(z*x) + (3-z)*(z*x)^2}/((1 - z)^2*(1 - (z*x)^2)^3).
G.f. diagonals d >= 1: GD(d, x) = ((d+1)*3 - (5*d+3)*x + (2*d+1)*x^2)/(1-x)^3.
G.f. of GD(d, x): GGD(z,x) = (6-8*x+3*x^2 - (3-3*x+x^2)*z)/((1-x)^3*(1-z)^2).
Previous Showing 21-30 of 63 results. Next