cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A017492 a(n) = (11*n + 8)^8.

Original entry on oeis.org

16777216, 16983563041, 656100000000, 7984925229121, 53459728531456, 248155780267521, 899194740203776, 2724905250390625, 7213895789838336, 17181861798319201, 37588592026706176, 76686282021340161, 147578905600000000, 270281038127131201, 474373168346071296
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), this sequence (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^8); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^8: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^8, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[21] -3)^8 (* G. C. Greubel, Sep 22 2019 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{16777216,16983563041,656100000000,7984925229121,53459728531456,248155780267521,899194740203776,2724905250390625,7213895789838336},20] (* Harvey P. Dale, Jul 02 2024 *)
  • PARI
    vector(20, n, (11*n-3)^8) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^8 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (16777216 +16832568097*x +503851912407*x^2 +2690024212453*x^3 + 3790496103139*x^4 +1500946746723*x^5 +139306025317*x^6 +1475730007*x^7 + 6561*x^8)/(1-x)^9.
E.g.f.: (16777216 +16966785825*x +311074825567*x^2 +1011259856838*x^3 + 1057862922501*x^4 +451919091162*x^5 +86384857482*x^6 +7249227612*x^7 + 214358881*x^8)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017493 a(n) = (11*n + 8)^9.

Original entry on oeis.org

134217728, 322687697779, 19683000000000, 327381934393961, 2779905883635712, 15633814156853823, 66540410775079424, 231616946283203125, 692533995824480256, 1838459212420154507, 4435453859151328768, 9892530380752880769, 20661046784000000000, 40812436757196811351
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), this sequence (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^9); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^9: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^9, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11Range[0,10]+8)^9  (* Harvey P. Dale, Apr 06 2011 *)
  • Maxima
    makelist( (11*n+8)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(20, n, (11*n-3)^9) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^9 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (134217728 +321345520499*x +16462162819970*x^2 +145056774666656*x^3 +353127201685502*x^4 +272712961891082*x^5 +64342728755486*x^6 + 3608087683520*x^7 +20660849954*x^8 +19683*x^9)/(1-x)^10.
E.g.f.: (134217728 +322553480051*x +9518879411085*x^2 +44883477211595*x^3 +66132730395270*x^4 +40107394890717*x^5 +11363589456450*x^6 + 1566417779322*x^7 +100319956308*x^8 +2357947691*x^9)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017494 a(n) = (11*n + 8)^10.

Original entry on oeis.org

1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624, 1276136419117121619201, 2892546549760000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), this sequence (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^10); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^10: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^10, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[21] -3)^10 (* G. C. Greubel, Sep 22 2019 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1073741824,6131066257801,590490000000000,13422659310152401,144555105949057024,984930291881790849,4923990397355877376,19687440434072265625,66483263599150104576,196715135728956532249,523383555379856794624},20] (* Harvey P. Dale, May 08 2022 *)
  • PARI
    vector(20, n, (11*n-3)^10) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^10 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (1073741824 +6119255097737*x +523107326964509*x^2 +7264300786930496 *x^3 +28371531939645368*x^4 +37662294296897282*x^5 +17578871136786818* x^6 +2623025688296696*x^7 +92185633683584*x^8 +289254005437*x^9 +59049* x^10)/(1-x)^11.
E.g.f.: (1073741824 +6129992515977*x +289114470613111*x^2 +1944930239197330*x^3 +3932620229881585*x^4 +3254225912463141*x^5 + 1282086963575187*x^6 +258144995263320*x^7 +26861311378110*x^8 + 1355819922325*x^9 +25937424601*x^10)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017495 a(n) = (11*n + 8)^11.

Original entry on oeis.org

8589934592, 116490258898219, 17714700000000000, 550329031716248441, 7516865509350965248, 62050608388552823487, 364375289404334925824, 1673432436896142578125, 6382393305518410039296, 21048519522998348950643, 61759259534823101765632, 164621598066108688876929
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), this sequence (m=11), A017496 (m=12).

Programs

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (8589934592 +116387179683115*x +16317383828904444*x^2 + 345439099017920655*x^3 +2056463723815998816*x^4 +4330360244540059158*x^5 +3485249533342266888*x^6 +1049164126934199606*x^7 +103278745612305120* x^8 +2335591020671359*x^9 +4049563043900*x^10 +177147*x^11)/(1-x)^12.
E.g.f.: (8589934592 +116481668963627*x +8740864036069077*x^2 + 82922398983834751*x^3 +225890484585013050*x^4 +248275055013875318*x^5 + 130670920341658389*x^6 +36045281196709257*x^7 +5418280840195080*x^8 + 440547156847985*x^9 +17974635248493*x^10 +285311670611*x^11)*exp(x). (End)

Extensions

More terms added by G. C. Greubel, Sep 22 2019

A017496 a(n) = (11*n + 8)^12.

Original entry on oeis.org

68719476736, 2213314919066161, 531441000000000000, 22563490300366186081, 390877006486250192896, 3909188328478827879681, 26963771415920784510976, 142241757136172119140625, 612709757329767363772416, 2252191588960823337718801
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), this sequence (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^12); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^12: n in [0..20]]; // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq((11*n+8)^12, n=0..20); # G. C. Greubel, Sep 22 2019
  • Mathematica
    (11*Range[0,20]+8)^12 (* Harvey P. Dale, Jul 31 2012 *)
  • Maxima
    makelist( (11*n+8)^12, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(20, n, (11*n-3)^12) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^12 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (68719476736 +2212421565868593*x +502673266171325315 x^2 + 15827376210283000143*x^3 +138371071649062718037*x^4 + 437329793311303632234*x^5 +556703322340591831614*x^6 + 291323423723258446014*x^7 +59225473544688673002*x^8 + 3967943081254819733*x^9 +58867623955964175*x^10 +56693905466563*x^11 + 531441*x^12)/(1-x)^13.
E.g.f.: (68719476736 +2213246199589425*x +263507219440672207*x^2 + 3495967862733984638*x^3 +12658451587242860861*x^4 +18126123796309288584* x^5 +12400673710435349284*x^6 +4501229025478529124*x^7 + 916653053822529507*x^8 +106739635024880275*x^9 +6967025684650009*x^10 + 234526193242242*x^11 +3138428376721*x^12)*exp(x). (End)

A125199 Triangle read by rows: T(n,k) = 4*n*k - n - k, 1<=k<=n.

Original entry on oeis.org

2, 5, 12, 8, 19, 30, 11, 26, 41, 56, 14, 33, 52, 71, 90, 17, 40, 63, 86, 109, 132, 20, 47, 74, 101, 128, 155, 182, 23, 54, 85, 116, 147, 178, 209, 240, 26, 61, 96, 131, 166, 201, 236, 271, 306, 29, 68, 107, 146, 185, 224, 263, 302, 341, 380, 32, 75, 118, 161, 204, 247
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

A124934 gives the range: for n,k with 1<=k<=n exists at least one m such that A124934(m)=T(n,k);
row sums give A125200; central terms give A125201;
T(n,1) = A016789(n-1);
T(n,2) = A017041(n-1) for n>1;
T(n,3) = A017485(n-1) for n>2;
T(n,n-1) = A125202(n) for n>1;
T(n,n) = A002939(n).

Programs

  • Mathematica
    Flatten[Table[4*n*k-n-k,{n,15},{k,n}]] (* Harvey P. Dale, Nov 15 2014 *)

A157442 a(n) = 14641*n^2 - 24684*n + 10405.

Original entry on oeis.org

362, 19601, 68122, 145925, 253010, 389377, 555026, 749957, 974170, 1227665, 1510442, 1822501, 2163842, 2534465, 2934370, 3363557, 3822026, 4309777, 4826810, 5373125, 5948722, 6553601, 7187762, 7851205, 8543930, 9265937
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (14641*n^2 - 24684*n + 10405)^2 - (121*n^2 - 204*n + 86)*(1331*n - 1122)^2 = 1 can be written as a(n)^2 - A157440(n)*A157441(n)^2 = 1. - Vincenzo Librandi, Jan 29 2012

Crossrefs

Programs

  • Magma
    I:=[362, 19601, 68122]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
    
  • Mathematica
    Table[14641n^2-24684n+10405,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{362,19601,68122},30]
  • PARI
    for(n=1, 40, print1(14641*n^2 - 24684*n + 10405", ")); \\ Vincenzo Librandi, Jan 29 2012

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=362, a(2)=19601, a(3)=68122. - Harvey P. Dale, Oct 22 2011
G.f.: x*(-10405*x^2 - 18515*x - 362)/(x-1)^3. - Harvey P. Dale, Oct 22 2011
a(n) = A017485(11*n-10)^2 + 1. - Bruno Berselli, Jan 29 2012

A243520 Numbers that are congruent to {0, 8} mod 11.

Original entry on oeis.org

0, 8, 11, 19, 22, 30, 33, 41, 44, 52, 55, 63, 66, 74, 77, 85, 88, 96, 99, 107, 110, 118, 121, 129, 132, 140, 143, 151, 154, 162, 165, 173, 176, 184, 187, 195, 198, 206, 209, 217, 220, 228, 231, 239, 242, 250, 253, 261, 264, 272, 275, 283, 286, 294, 297, 305
Offset: 0

Views

Author

Viet Quoc Le Tran, Jun 14 2014

Keywords

Comments

Union of A008593 and A017485. - Michel Marcus, Jun 15 2014
This sequence mimics in some sense the ceiling function of n/2 (the seq. A110654) relative to variations from a main class of recurrence relations; in order to get the ceiling function of n/2 (see Formula section), the vector v must be [0,1] instead of [3,8]. - R. J. Cano, Jun 15 2014

Crossrefs

Programs

  • Magma
    &cat [[11*n,11*n+8]: n in [0..30]]; // [Bruno Berselli, Jun 16 2014]
  • Maple
    A243520:=n->5*n + 2*(n mod 2) + ceil(n/2); seq(A243520(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Flatten[Table[11 n + {0, 8}, {n, 0, 32}]] (* Alonso del Arte, Jun 15 2014 *)
  • PARI
    a(n)=5*n+2*(n%2)+ceil(n/2); \\ R. J. Cano, Jun 15 2014
    
  • PARI
    a(n)=if(!n,0,a(n-1)+[3,8][1+n%2]); \\ R. J. Cano, Jun 15 2014
    

Formula

a(n) = -5/4*(-1)^n + 11*n/2 + 5/4.
From R. J. Cano, Jun 15 2014: (Start)
a(n) = 5*n + 2*(n mod 2) + ceiling(n/2).
If n=0 then a(n) is zero, else a(n) = a(n-1) + v[n mod 2], where v is [3,8]. (End)
G.f.: x*(8 + 3*x) / ((1 + x)*(1 - x)^2). [Bruno Berselli, Jun 16 2014]
a(n) = sum( A010706(i), i=0..n ) - 3. [Bruno Berselli, Jun 16 2014]
E.g.f.: (11*x*exp(x) + 5*sinh(x))/2. - David Lovler, Sep 04 2022

A108725 Numbers n such that 11*n + 19 is prime.

Original entry on oeis.org

0, 2, 8, 12, 14, 20, 24, 30, 44, 48, 50, 54, 62, 72, 78, 90, 92, 98, 104, 110, 122, 128, 132, 134, 140, 150, 162, 164, 168, 170, 174, 180, 188, 192, 194, 212, 218, 230, 234, 240, 252, 258, 260, 272, 282, 288, 290, 294, 300, 308, 318, 320, 324, 332, 344, 348, 362
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 21 2005

Keywords

Comments

All terms must be even. - Harvey P. Dale, Jan 05 2019

Examples

			If n=0, then 11*n + 19 = 19 (prime).
If n=48, then 11*n + 19 = 547 (prime).
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(11*n+19)=true then n else fi end: seq(a(n),n=0..400); # Emeric Deutsch, Jul 04 2005
  • Mathematica
    Select[Range[0,400,2],PrimeQ[ 11#+19]&] (* Harvey P. Dale, Jan 05 2019 *)
  • PARI
    is(n)=isprime(11*n+19) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Emeric Deutsch, Jul 04 2005

A248339 a(n) = 22*n + 19.

Original entry on oeis.org

19, 41, 63, 85, 107, 129, 151, 173, 195, 217, 239, 261, 283, 305, 327, 349, 371, 393, 415, 437, 459, 481, 503, 525, 547, 569, 591, 613, 635, 657, 679, 701, 723, 745, 767, 789, 811, 833, 855, 877, 899, 921, 943, 965, 987, 1009
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 05 2014

Keywords

Comments

These are the odd numbers in A017485.
Solutions to 11^x + 13^x == 17 mod 23.
A141855 is the subsequence of primes.

Examples

			For n = 4, 22*4 + 19 = 107.
		

Crossrefs

Cf. A017485 (11*n+8), A141855.

Programs

  • Magma
    [22*n+19: n in [0..60]]; // G. C. Greubel, Nov 13 2024
  • Mathematica
    22*Range[0,50]+19 (* or *) LinearRecurrence[{2,-1},{19,41},50] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    Vec((3*x+19)/(x-1)^2 + O(x^100)) \\ Colin Barker, Oct 05 2014
    
  • Python
    for n in range(101):
        print(22*n+19,end=', ')
    

Formula

a(n) = 22*n + 19.
From Colin Barker, Oct 05 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (19 + 3*x) / (1-x)^2. (End)
E.g.f.: (19 + 22*x)*exp(x). - G. C. Greubel, Nov 13 2024
Previous Showing 11-20 of 21 results. Next