cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 133 results. Next

A062051 Number of partitions of n into powers of 3.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 23, 23, 23, 28, 28, 28, 33, 33, 33, 40, 40, 40, 47, 47, 47, 54, 54, 54, 63, 63, 63, 72, 72, 72, 81, 81, 81, 93, 93, 93, 105, 105, 105, 117, 117, 117, 132, 132, 132, 147, 147, 147, 162
Offset: 0

Views

Author

Amarnath Murthy, Jun 06 2001

Keywords

Comments

Number of different partial sums of 1+[1,*3]+[1,*3]+..., where [1,*3] means we can either add 1 or multiply by 3. E.g., a(6)=3 because we have 6=1+1+1+1+1+1=(1+1)*3=1*3+1+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n into distinct 3-smooth parts. E.g., a(10) = #{9+1, 8+2, 6+4, 6+3+1, 4+3+2+1} = #{9+1, 3+3+3+1, 3+3+1+1+1+1, 3+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1} = 5. - Reinhard Zumkeller, Apr 07 2005
Starts to differ from A008650 at a(81). - R. J. Mathar, Jul 31 2010
If m=ceiling(log_3(2k)) and n=(3^m+1)/2-k for k in the range (3^(m-1)+1)/2+(3^(m-2))<=k<=(3^m-1)/2, this sequence gives the number of "feasible" partitions described in the sequence A254296. For instance, the terms starting at 121st term of A254296 backwards to 68th term of A254296 provide the first 54 terms of this sequence. - Md. Towhidul Islam, Mar 01 2015
From Gary W. Adamson, Sep 03 2016: (Start)
Let M =
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 0, 0, ...
..., where the leftmost column is all 1's, and all other columns are 1's shifted down thrice. Lim_{k=1..inf} M^k has a single nonzero column, which gives the sequence. (End)

Examples

			a(4) = 2 and the partitions are 3+1, 1+1+1+1;
a(9) = 5 and the partitions are 9; 3+3+3; 3+3+1+1+1; 3+1+1+1+1+1+1; 1+1+1+1+1+1+1+1+1.
		

Crossrefs

Programs

  • Mathematica
    nn=70;a=Product[1/(1-x^(3^i)),{i,0,4}];CoefficientList[Series[a,{x,0,nn}],x] (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    { n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*3)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A062051(n): return A062051(n-1)+(0 if n%3 else A062051(n//3)) if n>2 else 1 # Chai Wah Wu, Sep 21 2022

Formula

a(n) = A005704([n/3]).
G.f.: Product_{k>=0} 1/(1-x^(3^k)). - R. J. Mathar, Jul 31 2010
If m = ceiling(log_3(2k)), define n = (3^m + 1)/2 - k for k in the range (3^(m-1)+1)/2 + (3^(m-2)) <= k <= (3^m-1)/2. Then, a(n) = Sum_{s=ceiling((k-1)/3)..(3^(m-1)-1)/2} a(s). This gives the first 2(3^(m-1))/3 terms. - Md. Towhidul Islam, Mar 01 2015
G.f.: 1 + Sum_{i>=0} x^(3^i) / Product_{j=0..i} (1 - x^(3^j)). - Ilya Gutkovskiy, May 07 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2001

A115361 Inverse of matrix (1,x)-(x,x^2) (expressed in Riordan array notation).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

Row sums are the 'ruler function' A001511. Columns are stretched Fredholm-Rueppel sequences (A036987). Inverse is A115359.
Eigensequence of triangle A115361 = A018819 starting with offset 1: (1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, ...). - Gary W. Adamson, Nov 21 2009
From Gary W. Adamson, Nov 27 2009: (Start)
A115361 * [1, 2, 3, ...] = A129527 = (1, 3, 3, 7, 5, 9, 7, 15, ...).
(A115361)^(-1) * [1, 2, 3, ...] = A115359 * [1, 2, 3, ...] = A026741 starting /Q (1, 1, 3, 2, 5, 3, 7, 4, 9, ...). (End)
This is the lower-left triangular part of the inverse of the infinite matrix A_{ij} = [i=j] - [i=2j], its upper-right part (above / right to the diagonal) being zero. The n-th row has 1 in column n/2^i, i = 0, 1, ... as long as this is an integer. - M. F. Hasler, May 13 2018
The rows are the reversed binary expansions of A127804. - Tilman Piesk, Jun 10 2025

Examples

			Triangle begins:
  1;
  1,1;
  0,0,1;
  1,1,0,1;
  0,0,0,0,1;
  0,0,1,0,0,1;
  0,0,0,0,0,0,1;
  1,1,0,1,0,0,0,1;
  0,0,0,0,0,0,0,0,1;
  0,0,0,0,1,0,0,0,0,1;
  0,0,0,0,0,0,0,0,0,0,1;
		

Crossrefs

Programs

  • Maple
    A115361 := proc(n,k)
        for j from 0 do
            if k+(2*j-1)*(k+1) > n then
                return 0 ;
            elif k+(2^j-1)*(k+1) = n then
                return 1 ;
            end if;
        end do;
    end proc: # R. J. Mathar, Jul 14 2012
  • Mathematica
    (*recurrence*)
    Clear[t]
    t[1, 1] = 1;
    t[n_, k_] :=
    t[n, k] =
      If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}],
       If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
    Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 14}]] (* Mats Granvik, Jun 26 2014 *)
  • PARI
    tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = T^(-1); for (n=1, nn, for (k=1, n, print1(Ti[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
    
  • PARI
    A115361_row(n,v=vector(n))={until(bittest(n,0)||!n\=2,v[n]=1);v} \\ Yields the n-th row (of length n). - M. F. Hasler, May 13 2018
    
  • PARI
    T(n,k)={if(n%k, 0, my(e=valuation(n/k,2)); n/k==1<Andrew Howroyd, Aug 03 2018
    
  • Python
    # translation of Maple code by R. J. Mathar
    def a115361(n, k):
        j = 0
        while True:
            if k + (2*j - 1) * (k + 1) > n:
                return 0
            elif k + (2**j - 1) * (k + 1) == n:
                return 1
            else:
                j += 1  #  Tilman Piesk, Jun 10 2025

Formula

Number triangle whose k-th column has g.f. x^k*sum{j>=0} x^((2^j-1)*(k+1)).
T(n,k) = A209229((n+1)/(k+1)) for k+1 divides n+1, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 05 2018

A342083 Number of chains of strictly inferior divisors from n to 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 4, 2, 2, 1, 7, 1, 2, 3, 3, 2, 5, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2021

Keywords

Comments

We define a divisor d|n to be strictly inferior if d < n/d. Strictly inferior divisors are counted by A056924 and listed by A341674.
These chains have first-quotients (in analogy with first-differences) that are term-wise > their decapitation (maximum element removed). Equivalently, x > y^2 for all adjacent x, y. For example, the divisor chain q = 60/6/2/1 has first-quotients (10,3,2), which are > (6,2,1), so q is counted under a(60).
Also the number of factorizations of n where each factor is greater than the product of all previous factors.

Examples

			The a(n) chains for n = 2, 6, 12, 24, 42, 48, 60, 72:
  2/1  6/1    12/1    24/1    42/1      48/1      60/1      72/1
       6/2/1  12/2/1  24/2/1  42/2/1    48/2/1    60/2/1    72/2/1
              12/3/1  24/3/1  42/3/1    48/3/1    60/3/1    72/3/1
                      24/4/1  42/6/1    48/4/1    60/4/1    72/4/1
                              42/6/2/1  48/6/1    60/5/1    72/6/1
                                        48/6/2/1  60/6/1    72/8/1
                                                  60/6/2/1  72/6/2/1
                                                            72/8/2/1
The a(n) factorizations for n = 2, 6, 12, 24, 42, 48, 60, 72:
  2  6    12   24    42     48     60      72
     2*3  2*6  3*8   6*7    6*8    2*30    8*9
          3*4  4*6   2*21   2*24   3*20    2*36
               2*12  3*14   3*16   4*15    3*24
                     2*3*7  4*12   5*12    4*18
                            2*3*8  6*10    6*12
                                   2*3*10  2*4*9
                                           2*3*12
		

Crossrefs

The restriction to powers of 2 is A040039.
Not requiring strict inferiority gives A074206 (ordered factorizations).
The weakly inferior version is A337135.
The strictly superior version is A342084.
The weakly superior version is A342085.
The additive version is A342098, or A000929 allowing equality.
A000005 counts divisors.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n-1, with strict case A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
A342086 counts chains of divisors with strictly increasing quotients > 1.
- Inferior: A033676, A066839, A072499, A161906.
- Superior: A033677, A070038, A161908.
- Strictly Inferior: A060775, A070039, A333806, A341674.
- Strictly Superior: A048098, A064052, A140271, A238535, A341673.

Programs

  • Mathematica
    cen[n_]:=If[n==1,{{1}},Prepend[#,n]&/@Join@@cen/@Select[Divisors[n],#
    				

Formula

G.f.: x + Sum_{k>=1} a(k) * x^(k*(k + 1)) / (1 - x^k). - Ilya Gutkovskiy, Nov 03 2021

A342084 Number of chains of distinct strictly superior divisors starting with n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 9, 1, 2, 2, 4, 1, 7, 1, 6, 2, 2, 2, 10, 1, 2, 2, 9, 1, 6, 1, 4, 4, 2, 1, 19, 1, 4, 2, 4, 1, 8, 2, 9, 2, 2, 1, 20, 1, 2, 4, 10, 2, 6, 1, 4, 2, 7, 1, 29, 1, 2, 4, 4, 2, 6, 1, 19, 3, 2, 1, 19, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2021

Keywords

Comments

We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.
These chains have first-quotients (in analogy with first-differences) that are term-wise < their decapitation (maximum element removed). Equivalently, x < y^2 for all adjacent x, y. For example, the divisor chain q = 30/6/3 has first-quotients (5,2), which are < (6,3), so q is counted under a(30).
Also the number of ordered factorizations of n where each factor is less than the product of all previous factors.

Examples

			The a(n) chains for n = 2, 6, 12, 16, 24, 30, 32, 36:
  2  6    12      16      24         30       32         36
     6/3  12/4    16/8    24/6       30/6     32/8       36/9
          12/6    16/8/4  24/8       30/10    32/16      36/12
          12/6/3          24/12      30/15    32/8/4     36/18
                          24/6/3     30/6/3   32/16/8    36/12/4
                          24/8/4     30/10/5  32/16/8/4  36/12/6
                          24/12/4    30/15/5             36/18/6
                          24/12/6                        36/18/9
                          24/12/6/3                      36/12/6/3
                                                         36/18/6/3
The a(n) ordered factorizations for n = 2, 6, 12, 16, 24, 30, 32, 36:
  2  6    12     16     24       30     32       36
     3*2  4*3    8*2    6*4      6*5    8*4      9*4
          6*2    4*2*2  8*3      10*3   16*2     12*3
          3*2*2         12*2     15*2   4*2*4    18*2
                        3*2*4    3*2*5  8*2*2    4*3*3
                        4*2*3    5*2*3  4*2*2*2  6*2*3
                        4*3*2    5*3*2           6*3*2
                        6*2*2                    9*2*2
                        3*2*2*2                  3*2*2*3
                                                 3*2*3*2
		

Crossrefs

The restriction to powers of 2 is A045690, with reciprocal version A040039.
The inferior version is A337135.
The strictly inferior version is A342083.
The superior version is A342085.
The additive version allowing equality is A342094 or A342095.
The additive version is A342096 or A342097.
A000005 counts divisors.
A001055 counts factorizations.
A003238 counts divisibility chains summing to n-1, with strict case A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
- Superior: A033677, A070038, A161908, A341591.
- Strictly Inferior: A060775, A070039, A333806, A341674.
- Strictly Superior: A064052/A048098, A140271, A238535, A341642, A341673.

Programs

  • Mathematica
    ceo[n_]:=Prepend[Prepend[#,n]&/@Join@@ceo/@Select[Most[Divisors[n]],#>n/#&],{n}];
    Table[Length[ceo[n]],{n,100}]

Formula

a(2^n) = A045690(n).

A005704 Number of partitions of 3n into powers of 3.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 93, 105, 117, 132, 147, 162, 180, 198, 216, 239, 262, 285, 313, 341, 369, 402, 435, 468, 508, 548, 588, 635, 682, 729, 783, 837, 891, 954, 1017, 1080, 1152, 1224, 1296, 1377, 1458, 1539, 1632
Offset: 0

Views

Author

Keywords

Comments

Infinite convolution product of [1,2,3,3,3,3,3,3,3,3] aerated A000244 - 1 times, i.e., [1,2,3,3,3,3,3,3,3,3] * [1,0,0,2,0,0,3,0,0,3] * [1,0,0,0,0,0,0,0,0,2] * ... [Mats Granvik, Gary W. Adamson, Aug 07 2009]

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1, #1}]], #2]]] &, {1}, Range[2, 55]] (* Birkas Gyorgy, Apr 18 2011 *)
    a[n_] := a[n] = If[n <= 2, n + 1, a[n - 1] + a[Floor[n/3]]]; Array[a, 101, 0] (* T. D. Noe, Apr 18 2011 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A005704(n): return A005704(n-1)+A005704(n//3) if n else 1 # Chai Wah Wu, Sep 21 2022

Formula

a(n) = a(n-1)+a(floor(n/3)).
Coefficient of x^(3*n) in prod(k>=0, 1/(1-x^(3^k))). Also, coefficient of x^n in prod(k>=0, 1/(1-x^(3^k)))/(1-x). - Benoit Cloitre, Nov 28 2002
a(n) mod 3 = binomial(2n, n) mod 3. - Benoit Cloitre, Jan 04 2004
Let T(x) be the g.f., then T(x)=(1-x^3)/(1-x)^2*T(x^3). [Joerg Arndt, May 12 2010]

Extensions

Formula and more terms from Henry Bottomley, Apr 30 2001

A097248 a(n) is the eventual stable point reached when iterating k -> A097246(k), starting from k = n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 5, 13, 14, 15, 5, 17, 10, 19, 15, 21, 22, 23, 10, 7, 26, 15, 21, 29, 30, 31, 10, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 7, 46, 47, 15, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 7, 61, 62, 35, 15, 65, 66, 67, 51, 69, 70, 71, 30, 73, 74, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

a(n) = r(n,m) with m such that r(n,m)=r(n,m+1), where r(n,k) = A097246(r(n,k-1)), r(n,0)=n. (The original definition.)
A097248(n) = r(n,a(n)).
From Antti Karttunen, Nov 15 2016: (Start)
The above remark could be interpreted to mean that A097249(n) <= a(n).
All terms are squarefree, and the squarefree numbers are the fixed points.
These are also fixed points eventually reached when iterating A277886.
(End)

Crossrefs

Range of values is A005117.
A003961, A225546, A277885, A277886, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A007913, A260443, A329050, A329332.
See comments/formulas in A283475, A283478, A331751 giving their relationship to this sequence.

Programs

  • Mathematica
    Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, n], {n, 75}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); };
    A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
    \\ Antti Karttunen, Mar 18 2017
    
  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def a097246(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f])
    def a(n):
        k=a097246(n)
        while k!=n:
            n=k
            k=a097246(k)
        return k # Indranil Ghosh, May 15 2017
  • Scheme
    ;; with memoization-macro definec
    ;; Two implementations:
    (definec (A097248 n) (if (not (zero? (A008683 n))) n (A097248 (A097246 n))))
    (definec (A097248 n) (if (zero? (A277885 n)) n (A097248 (A277886 n))))
    ;; Antti Karttunen, Nov 15 2016
    

Formula

a(A005117(n)) = A005117(n).
From Antti Karttunen, Nov 15 2016: (Start)
If A008683(n) <> 0 [when n is squarefree], a(n) = n, otherwise a(n) = a(A097246(n)).
If A277885(n) = 0, a(n) = n, otherwise a(n) = a(A277886(n)).
A007913(a(n)) = a(n).
a(A007913(n)) = A007913(n).
A048675(a(n)) = A048675(n).
a(A260443(n)) = A019565(n).
(End)
From Peter Munn, Feb 06 2020: (Start)
a(1) = 1; a(p) = p, for prime p; a(m*k) = A331590(a(m), a(k)).
a(A331590(m,k)) = A331590(a(m), a(k)).
a(n^2) = a(A003961(n)) = A003961(a(n)).
a(A225546(n)) = a(n).
a(n) = A225546(2^A048675(n)) = A019565(A048675(n)).
a(A329050(n,k)) = prime(n+k-1) = A000040(n+k-1).
a(A329332(n,k)) = A019565(n * k).
Equivalently, a(A019565(n)^k) = A019565(n * k).
(End)
From Antti Karttunen, Feb 22-25 & Mar 01 2020: (Start)
a(A019565(x)*A019565(y)) = A019565(x+y).
a(A332461(n)) = A332462(n).
a(A332824(n)) = A019565(n).
a(A277905(n,k)) = A277905(n,1) = A019565(n), for all n >= 1, and 1 <= k <= A018819(n).
(End)

Extensions

Name changed and the original definition moved to the Comments section by Antti Karttunen, Nov 15 2016

A050377 Number of ways to factor n into "Fermi-Dirac primes" (members of A050376).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

Crossrefs

Cf. A108951, A330687 (positions of records), A330688 (record values), A330689, A330690, A382295.

Programs

  • Maple
    A018819:= proc(n) option remember;
      if n::odd then procname(n-1)
      else procname(n-1) + procname(n/2)
      fi
    end proc:
    A018819(0):= 1:
    f:= n -> mul(A018819(s[2]),s=ifactors(n)[2]):
    seq(f(n),n=1..100); # Robert Israel, Jan 14 2016
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n - 1] + If[EvenQ[n], b[n/2], 0];
    a[n_] := Times @@ (b /@ FactorInteger[n][[All, 2]]);
    Array[a, 102] (* Jean-François Alcover, Jan 27 2018 *)
  • PARI
    A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819
    A050377(n) = factorback(apply(e -> A018819(e), factor(n)[, 2])); \\ Antti Karttunen, Dec 28 2019

Formula

Dirichlet g.f.: Product_{n in A050376} (1/(1-1/n^s)).
a(p^k) = A000123([k/2]) for all primes p.
a(A002110(n)) = 1.
Multiplicative with a(p^e) = A018819(e). - Christian G. Bower and David W. Wilson, May 22 2005
a(n) = Sum{a(d): d^2 divides n}, a(1) = 1. - Reinhard Zumkeller, Jul 12 2007
a(A108951(n)) = A330690(n). - Antti Karttunen, Dec 28 2019
a(n) = 1 for all squarefree values of n (A005117). - Eric Fox, Feb 03 2020
G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Nov 25 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.7876368001694456669... (A382295), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)). - Amiram Eldar, Oct 03 2023

Extensions

More terms from Antti Karttunen, Dec 28 2019

A101417 Number of partitions of n into parts without powers of 2.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 16 2005

Keywords

Examples

			a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6.
From _Gus Wiseman_, Jan 07 2019: (Start)
The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14):
  (3)  (5)  (6)   (7)  (53)  (9)    (A)   (B)    (C)     (D)    (E)
            (33)             (63)   (55)  (65)   (66)    (76)   (77)
                             (333)  (73)  (533)  (75)    (A3)   (95)
                                                 (93)    (553)  (B3)
                                                 (633)   (733)  (653)
                                                 (3333)         (5333)
(End)
		

Crossrefs

Programs

  • Maple
    g:= product(1-x^(2^j),j=0..15)/product(1-x^i,i=1..75): gser:= series(g, x=0,62): seq(coeff(gser,x,n),n=0..59); # Emeric Deutsch, Mar 29 2006
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Not/@IntegerQ/@Log[2,#]&]],{n,20}] (* Gus Wiseman, Jan 07 2019 *)

Formula

G.f.: Product_{j>=1} (1-x^(2^j)) / Product_{i>=2} (1-x^i). - Emeric Deutsch, Mar 29 2006

A351003 Number of integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 28, 36, 42, 51, 62, 75, 88, 106, 124, 147, 173, 202, 236, 278, 320, 371, 431, 497, 572, 661, 756, 867, 993, 1132, 1291, 1474, 1672, 1898, 2155, 2439, 2756, 3117, 3512, 3957, 4458, 5008, 5624, 6316, 7072, 7919, 8862, 9899
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The ordered version (compositions) is A027383.
The version for unequal instead of equal is A122135, even-length A351008.
For odd instead of even indices we have A351004, even-length A035363.
Requiring inequalities at odd positions gives A351006, even-length A351007.
The even-length case is A351012.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,10}]

A351007 Number of even-length integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions whose multiplicities begin with a 1, are followed by any number of 2's, and end with another 1.

Examples

			The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
  21  31  32  42  43  53    54    64    65    75    76    86    87
          41  51  52  62    63    73    74    84    85    95    96
                  61  71    72    82    83    93    94    A4    A5
                      3221  81    91    92    A2    A3    B3    B4
                            4221  5221  A1    B1    B2    C2    C3
                                        4331  4332  C1    D1    D2
                                        6221  5331  5332  5441  E1
                                              7221  6331  6332  5442
                                                    8221  7331  6441
                                                          9221  7332
                                                                8331
                                                                A221
                                                                433221
		

Crossrefs

The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A351006, odd-length A053251.
Without equalities we have A351008, any length A122129, opposite A122135.
Without inequalities we have A351012, any length A351003, opposite A351004.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]
Previous Showing 21-30 of 133 results. Next