cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A063696 Positions of positive coefficients in cyclotomic polynomial Phi_n(x), converted from binary to decimal.

Original entry on oeis.org

0, 2, 3, 7, 5, 31, 5, 127, 17, 73, 21, 2047, 17, 8191, 85, 297, 257, 131071, 65, 524287, 273, 4681, 1365, 8388607, 257, 1082401, 5461, 262657, 4369, 536870911, 387, 2147483647, 65537, 1198665, 87381, 17454241, 4097, 137438953471, 349525
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Comments

Maple procedures Phi_pos_terms and Phi_neg_terms are modeled after the formula given in Lam and Leung paper and they compute correct results for all integers x > 1 and for all n with at most two distinct odd prime factors (that is, up to n=104). Other procedures as in A063698 and A063694.

Crossrefs

Cf. A013594, A063697 (binary version), A063698 (negative terms), A063670 (nonzero terms).
A019320(n) = a(n) - A063698(n) for up to n=104.

Programs

  • Maple
    with(numtheory); [seq(Phi_pos_terms(j,2),j=0..104)];
    inv_p_mod_q := (p,q) -> op(2,op(1,msolve(p*x=1,q))); # Find's p's inverse modulo q.
    dilate := proc(nn,x,e) local n,i,s; n := nn; i := 0; s := 0; while(n > 0) do s := s + (((x^e)^i)*(n mod x)); n := floor(n/x); i := i+1; od; RETURN(s); end;
    Phi_pos_terms := proc(n,x) local a,m,p,q,e,f,r,s; if(n < 2) then RETURN(x); fi; a := op(2, ifactors(n)); m := nops(a); p := a[1][1]; e := a[1][2]; if(1 = m) then RETURN(((x^(p^e))-1)/((x^(p^(e-1)))-1)); fi; if(2 = m) then q := a[2][1]; f := a[2][2]; r := inv_p_mod_q(p,q)-1; s := inv_p_mod_q(q,p)-1; RETURN( (`if`(0=s,1,(((x^((s+1)*((q^f)*(p^(e-1)))))-1)/((x^((q^f)*(p^(e-1))))-1)))) * (`if`(0=r,1,(((x^((r+1)*((p^e)*(q^(f-1)))))-1)/((x^((p^e)*(q^(f-1))))-1)))) ); fi; if((3 = m) and (2 = p)) then if(1 = e) then RETURN(every_other_pos(Phi_pos_terms(n/2,x),x,0)+every_other_pos(Phi_neg_terms(n/2,x),x,1)); else RETURN(dilate(Phi_pos_terms((n/(2^(e-1))),x),x,2^(e-1))); fi; else printf(`Cannot handle argument %a with three or more distinct odd prime factors!\n`,n); RETURN(0); fi; end;
  • Mathematica
    a[n_] := 2^(Flatten[Position[CoefficientList[Cyclotomic[n, x], x], ?Positive]] - 1) // Total; a[0] = 0; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover, Mar 05 2016 *)
  • PARI
    a(n)=local(p); if(n<1,0,p=polcyclo(n); sum(i=0,n,2^i*(polcoeff(p,i)>0)))

A019325 Cyclotomic polynomials at x=7.

Original entry on oeis.org

7, 6, 8, 57, 50, 2801, 43, 137257, 2402, 117993, 2101, 329554457, 2353, 16148168401, 102943, 4956001, 5764802, 38771752331201, 117307, 1899815864228857, 5649505, 11898664849, 247165843, 4561457890013486057, 5762401, 79797014141614001, 12111126301, 1628413638264057
Offset: 0

Views

Author

Keywords

Comments

Sequence has a(0) = x; see comments in A020501.

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=7,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{7}, Cyclotomic[Range[50], 7]] (* Paolo Xausa, Feb 26 2024 *)
  • PARI
    a(n) = if(n==0, 7, polcyclo(n, 7)); \\ Michel Marcus, Dec 16 2017

Extensions

More terms from Michel Marcus, Dec 17 2017

A063703 Cyclotomic polynomials Phi_n at x=phi, floored down (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

1, 0, 2, 5, 3, 16, 2, 45, 7, 23, 4, 320, 5, 841, 11, 25, 47, 5776, 14, 15125, 34, 166, 76, 103680, 41, 16626, 199, 5855, 233, 1860496, 56, 4870845, 2207, 7601, 1364, 45080, 305, 87403801, 3571, 51940, 1926, 599074576, 407, 1568397605, 10946, 80320
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(floor(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Floor[Simplify[Cyclotomic[Range[0, 50],GoldenRatio]]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(43) corrected by Sean A. Irvine, May 08 2023

A063705 Cyclotomic polynomials Phi_n at x=phi, rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

2, 1, 3, 5, 4, 16, 2, 45, 8, 23, 5, 320, 5, 841, 11, 26, 48, 5776, 15, 15125, 34, 167, 76, 103680, 41, 16626, 199, 5855, 233, 1860496, 56, 4870845, 2208, 7602, 1364, 45081, 305, 87403801, 3571, 51941, 1926, 599074576, 407, 1568397605, 10946, 80321
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(round(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Join[{2}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(43) corrected by Sean A. Irvine, May 08 2023

A063707 Cyclotomic polynomials Phi_n at x=phi, ceiled up (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

2, 1, 3, 6, 4, 17, 2, 46, 8, 24, 5, 321, 6, 842, 12, 26, 48, 5777, 15, 15126, 35, 167, 77, 103681, 42, 16627, 200, 5856, 234, 1860497, 57, 4870846, 2208, 7602, 1365, 45081, 306, 87403802, 3572, 51941, 1927, 599074577, 408, 1568397606, 10947, 80321
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Join[{2}, Ceiling[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)

A066845 a(n) = (lcm_{k=0..n} (2^k + 1))/(lcm_{k=0..n-1} (2^k + 1)).

Original entry on oeis.org

3, 5, 3, 17, 11, 13, 43, 257, 57, 205, 683, 241, 2731, 3277, 331, 65537, 43691, 4033, 174763, 61681, 5419, 838861, 2796203, 65281, 1016801, 13421773, 261633, 15790321, 178956971, 80581, 715827883, 4294967297, 1397419, 3435973837
Offset: 1

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

The primitive part of 2^n + 1. Bisection of A019320. - T. D. Noe, Jul 24 2008

Crossrefs

Programs

Formula

a(n) = cyclotomic(2*n, 2). - Vladeta Jovovic, Apr 05 2004

A140797 Numbers of the form (2^p^N-1)/(2^p^(N-1)-1), where N>0, p is prime.

Original entry on oeis.org

3, 5, 7, 17, 31, 73, 127, 257, 2047, 8191, 65537, 131071, 262657, 524287, 1082401, 8388607, 536870911, 2147483647, 4294967297, 137438953471, 2199023255551, 4432676798593, 8796093022207, 140737488355327, 9007199254740991, 18014398643699713, 576460752303423487
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008

Keywords

Comments

Contains Fermat numbers A000215 (p=2) and Mersenne numbers A001348 (N=1). The terms of the sequence are either primes A000040 or overpseudoprimes A141232.
The values of A019320(n) for prime power n, sorted. This sequence is a subsequence of A064896, which means that all terms are sturdy numbers (A125121). It appears that the largest prime factor of each of these numbers is a sturdy prime (A143027). - T. D. Noe, Jul 21 2008

Crossrefs

Programs

  • Mathematica
    nmax[p_] := Which[p == 2, 6, p == 3, 4, True, 2];
    Reap[Do[If[IntegerQ[k = (2^p^n-1)/(2^p^(n-1)-1)] && k<10^18, Print[{p, n, k}]; Sow[k]], {p, Prime[Range[17]]}, {n, 1, nmax[p]}]][[2, 1]] // Union (* Jean-François Alcover, Dec 10 2018 *)

Extensions

Definition corrected by and more terms from T. D. Noe, Jul 21 2008

A250197 Numbers k such that the left Aurifeuillian primitive part of 2^k+1 is prime.

Original entry on oeis.org

10, 14, 18, 22, 26, 30, 42, 54, 58, 66, 70, 86, 94, 98, 106, 110, 126, 130, 138, 146, 158, 174, 186, 210, 222, 226, 258, 302, 334, 434, 462, 478, 482, 522, 566, 602, 638, 706, 734, 750, 770, 782, 914, 1062, 1086, 1114, 1126, 1226, 1266, 1358, 1382, 1434, 1742, 1926
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

All terms are congruent to 2 modulo 4.
Phi_n(x) is the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nL(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, this is Phi_{2n}(2).
Let L(n) = the Aurifeuillian L-part of 2^n+1, L(n) = 2^(n/2) - 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let L*(n) = GCD(L(n), J*(n)).
This sequence lists all n such that L*(n) is prime.

Examples

			14 is in this sequence because the left Aurifeuillian primitive part of 2^14+1 is 113, which is prime.
34 is not in this sequence because the left Aurifeuillian primitive part of 2^34+1 is 130561, which equals 137 * 953 and is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 4] == 2 && PrimeQ[GCD[2^(#/2) - 2^((#+2)/4) + 1, Cyclotomic[2*#, 2]]] &]
  • PARI
    isok(n) = isprime(gcd(2^(n/2) - 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A051844 a(n) = LCM_{k=0..n} (2^k + 1).

Original entry on oeis.org

2, 6, 30, 90, 1530, 16830, 218790, 9407970, 2417848290, 137817352530, 28252557268650, 19296496614487950, 4650455684091595950, 12700394473254148539450, 41619192688853844763777650, 13775952780010622616810402150, 902834617343556174437903325704550
Offset: 0

Views

Author

Jeffrey Shallit, Apr 20 2000

Keywords

Examples

			a(3) = lcm(2, 3, 5) = 30.
		

Crossrefs

Cf. A034268.
Cf. A019320.

Programs

  • Mathematica
    Module[{nn=20,c},c=Table[2^n+1,{n,0,nn}];Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Aug 04 2017 *)
  • PARI
    a(n) = {ret = 1; for (k=0, n, ret = lcm(ret, 2^k+1)); return(ret);} \\ Michel Marcus, May 24 2013
    
  • Python
    from math import lcm
    from itertools import accumulate
    def aupton(nn): return list(accumulate((2**k+1 for k in range(nn+1)), lcm))
    print(aupton(16)) # Michael S. Branicky, Jul 04 2022

Formula

a(n) = lcm(2, 3, 5, ..., 2^n + 1).
Product_{k=1..n} cyclotomic(2*k-2, 2). - Vladeta Jovovic, Apr 05 2004

Extensions

More terms from Harvey P. Dale, Aug 04 2017
Previous Showing 21-30 of 37 results. Next