cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 105 results. Next

A217112 Greatest number (in decimal representation) with n nonprime substrings in binary representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 3, 7, 6, 15, 14, 31, 29, 30, 63, 61, 62, 127, 54, 125, 126, 255, 117, 251, 254, 189, 511, 479, 509, 510, 379, 502, 1023, 1021, 1007, 1022, 958, 1018, 1014, 2047, 2045, 1791, 2046, 2042, 2027, 2037, 4091, 4095, 4063, 3069, 4094, 4090, 4085, 8159, 8187, 8191, 8189, 8127
Offset: 1

Views

Author

Hieronymus Fischer, Dec 20 2012

Keywords

Comments

There are no numbers with zero nonprime substrings in binary representation. For all bases > 2 there is always a number (=2) with zero nonprime substrings.
The set of numbers with n nonprime substrings is finite. Proof: Evidently, each 1-digit binary number represents 1 nonprime substring. Hence, each (n+1)-digit number has at least n+1 nonprime substrings. Consequently, there is a boundary b < 2^n, such that all numbers > b have more than n nonprime substrings.

Examples

			(1) = 1, since 1 = 1_2 (binary) is the greatest number with 1 nonprime substring.
a(2) = 3 = 11_2 has 3 substrings in binary representation (1, 1 and 11), two of them are nonprime substrings (1 and 1), and 11_2 = 3 is the only prime substrings. 3 is the greatest number with 2 nonprime substrings.
a(8) = 29 = 11101_2 has 15 substrings in binary representation (0, 1, 1, 1, 1, 11, 11, 10, 01, 111, 110, 101, 1110, 1101, 11101), exactly 8 of them are nonprime substrings (0, 1, 1, 1, 1, 01, 110, 1110). There is no greater number with 8 nonprime substrings in binary representation.
a(14) = 54 = 110110_2 has 21 substrings in binary representation, only 7 of them are prime substrings (10, 10, 11, 11, 101, 1011, 1101), which implies that exactly 14 substrings must be nonprime. There is no greater number with 14 nonprime substrings in binary representation.
		

Crossrefs

Formula

a(n) >= A217102(n).
a(n) >= A217302(A000217(A070939(a(n)))-n).
Example: a(9)=30=11110_2, A000217(A070939(31))=15, hence, a(9)>=A217302(15-9)=27.
a(n) <= 2^n.
a(n) <= 2^min(6 + n/6, 20*floor((n+125)/126)).
a(n) <= 64*2^(n/6).
With m := floor(log_2(a(n))) + 1:
a(n+m+1) >= 2*a(n), if a(n) is even.
a(n+m) >= 2*a(n), if a(n) is odd.

A217119 Greatest number (in decimal representation) with n nonprime substrings in base-9 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

47, 428, 1721, 6473, 14033, 35201, 58961, 58967, 465743, 530701, 530710, 1733741, 4250788, 4723108, 4776398, 25051529, 37327196, 42450640, 42986860, 42987589, 42996409, 225463817, 382055767, 382571822, 386888308, 386888419, 387356789
Offset: 0

Views

Author

Hieronymus Fischer, Dec 20 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty and finite. Proof of existence: Define m(n):=2*sum_{j=i..k} 9^j, where k:=floor((sqrt(8n+1)-1)/2), i:= n-(k(k+1)/2). For n=0,1,2,3,... the m(n) in base-9 representation are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, .... m(n) has k+1 digits and (k-i+1) 2’s. Thus, the number of nonprime substrings of m(n) is ((k+1)(k+2)/2)-k-1+i=(k(k+1)/2)+i=n. This proves the statement of existence. Proof of finiteness: Each 3-digit base-9 number has at least 1 nonprime substring. Hence, each 3(n+1)-digit number has at least n+1 nonprime substrings. Consequently, there is a boundary b < 9^(3n+2) such that all numbers > b have more than n nonprime substrings. It follows, that the set of numbers with n nonprime substrings is finite.

Examples

			a(0) = 47, since 47 = 52_9 (base-9) is the greatest number with zero nonprime substrings in base-9 representation.
a(1) = 428 = 525_9 has 1 nonprime substring in base-9 representation (= 525_9). All the other base-9 substrings (2, 5, 5, 25, 52) are prime substrings. 525_9 is the greatest number with 1 nonprime substring.
a(2) = 1721 = 2322_9 has 10 substrings in base-9 representation, exactly 2 of them are nonprime substrings (22_9 and 23_3=8), and there is no greater number with 2 nonprime substrings in base-9 representation.
a(7) = 58967= 88788_9 has 15 substrings in base-9 representation, exactly 7 of them are nonprime substrings (4-times 8, 2-times 88, and 8788), and there is no greater number with 7 nonprime substrings in base-9 representation.
		

Crossrefs

Formula

a(n) >= A217109(n).
a(n) >= A217309(A000217(num_digits_9(a(n)))-n), where num_digits_9(x)=floor(log_9(x))+1 is the number of digits of the base-9 representation of x.
a(n) <= 9^(n+2).
a(n) <= 9^min(n+2, 6*floor((n+7)/8)).
a(n) <= 9^((3/4)*(n + 3)).
a(n+m+1) >= 9*a(n), where m := floor(log_9(a(n))) + 1.

A152313 Primes without 0's or primes in their decimal expansion.

Original entry on oeis.org

11, 19, 41, 61, 89, 149, 181, 191, 199, 419, 449, 461, 491, 499, 619, 641, 661, 691, 811, 881, 911, 919, 941, 991, 1181, 1481, 1489, 1499, 1619, 1669, 1699, 1811, 1861, 1889, 1949, 1999, 4111, 4441, 4481, 4649, 4691, 4861, 4889, 4919, 4969, 4999
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | Set(Intseq(p))  subset [1,4,6,8,9]]; // Vincenzo Librandi, Oct 25 2016
  • Maple
    F:= proc(d) local T, R, L, r;
       R:= NULL;
       T:= combinat:-cartprod([[1,4,6,8,9]$d]);
       while not T[finished] do
         L:= T[nextvalue]();
         r:= add(L[i]*10^(d-i),i=1..d);
         if isprime(r) then R:= R,r fi
       od;
    R
    end proc:
    seq(F(d),d=2..5); # Robert Israel, Dec 07 2017
  • Mathematica
    Select[Prime[Range[800]], Complement[IntegerDigits[#], {1, 4, 6, 8, 9}] == {} &] (* Vincenzo Librandi, Oct 25 2016 *)

A214705 Primes that contain only the digits (2, 5, 7).

Original entry on oeis.org

2, 5, 7, 227, 257, 277, 557, 577, 727, 757, 2557, 2777, 5227, 5527, 5557, 7577, 7727, 7757, 22277, 22727, 22777, 25577, 27277, 27527, 52727, 52757, 57527, 57557, 57727, 72227, 72277, 72577, 72727, 75227, 75277, 75527, 75557, 75577, 77527, 77557, 222527, 222557
Offset: 1

Views

Author

Vincenzo Librandi, Jul 28 2012

Keywords

Comments

The digits are prime numbers.

Crossrefs

Subsequence of A019546.

Programs

  • Magma
    [p: p in PrimesUpTo(100000) | Set(Intseq(p)) subset [2,5,7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{2,5,7},n],PrimeQ],{n,6}]]
  • Python
    from sympy import primerange
    def ok(p): return set(str(p)) <= set("257")
    def aupto(limit): return [p for p in primerange(2, limit+1) if ok(p)]
    print(aupto(222557)) # Michael S. Branicky, Feb 05 2021

A083185 Palindromic primes using only nonprime digits (0,1,4,6,8,9).

Original entry on oeis.org

11, 101, 181, 191, 919, 10601, 11411, 16061, 16661, 18181, 18481, 19891, 19991, 91019, 94049, 94649, 94849, 94949, 96469, 98689, 1008001, 1114111, 1160611, 1180811, 1186811, 1190911, 1196911, 1409041, 1411141, 1444441, 1461641
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 26 2003

Keywords

Crossrefs

Palindromes in A034844.

Programs

  • Mathematica
    Select[ Prime[ Range[111500]], IntegerDigits[ # ] == Reverse[ IntegerDigits[ # ]] && Union[ Join[ IntegerDigits[ # ], {0, 1, 4, 6, 8, 9}]] == {0, 1, 4, 6, 8, 9} & ]
    Select[Prime[Range[120000]],PalindromeQ[#]&&NoneTrue[IntegerDigits[#], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 08 2018 *)

Extensions

Edited and extended by Patrick De Geest, Jun 11 2003

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023

A092624 Numbers with exactly two prime digits.

Original entry on oeis.org

22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 224, 226, 228, 229, 230, 231, 234, 236, 238, 239, 242, 243, 245
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

A193238(a(n))=2; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			25 has two prime digits, 2 and 5;
207 has two prime digits, 2 and 7.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092624 n = a092624_list !! (n-1)
    a092624_list = elemIndices 2 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nd:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 2) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nd(500);
  • Mathematica
    Select[Range[300],Count[IntegerDigits[#],?PrimeQ]==2&] (* _Harvey P. Dale, Apr 20 2025 *)

A092625 Numbers with exactly three prime digits.

Original entry on oeis.org

222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532, 533, 535, 537, 552, 553, 555, 557, 572, 573, 575, 577, 722, 723, 725
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

It is the same as A046034 from two digit numbers from 22 up to four digit numbers from 1222.
A193238(a(n))=3; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			222 has three prime digits, three times 2;
1235 has three prime digits, 2, 3 and 5.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092625 n = a092625_list !! (n-1)
    a092625_list = elemIndices 3 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nt(2000);
  • Mathematica
    Select[Range[800],Total[Boole[PrimeQ[IntegerDigits[#]]]]==3&] (* Harvey P. Dale, Dec 31 2023 *)

A108419 Primes with at least one of each prime digit.

Original entry on oeis.org

2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523, 22573, 23357, 23537, 23557, 23753, 25237, 25357, 25373, 25537, 25733, 27253, 32257, 32537, 32573, 35227, 35257, 35327, 35527, 37253, 52237, 52733, 53327, 53527, 57223, 72253, 72353, 72533, 73523, 75223, 75253
Offset: 1

Views

Author

Rick L. Shepherd, Jun 02 2005

Keywords

Comments

This is a subsequence of A019546.

Crossrefs

Cf. A019546 (primes whose digits are primes).

Programs

  • Mathematica
    Select[Table[Prime[n],{n,7200}],ContainsExactly[IntegerDigits[#],{2,3,5,7}]&] (* James C. McMahon, Mar 05 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen(): yield from (t for d in count(4) for b in product("2357", repeat=d-1) for e in "37" if len(set(b+(e,)))==4 and isprime(t:=int("".join(b)+e)))
    print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 05 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 18 2011

A124674 Primes with distinct prime digits.

Original entry on oeis.org

2, 3, 5, 7, 23, 37, 53, 73, 257, 523, 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523
Offset: 1

Views

Author

Tanya Khovanova, Dec 24 2006

Keywords

Crossrefs

Cf. A019546 (primes whose digits are primes), A124673.

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[ # ] && Length[IntegerDigits[ # ]] == Length[Union[IntegerDigits[ # ]]] && Complement[IntegerDigits[ # ], {2, 3, 5, 7}] == {} &]
  • PARI
    is(k) = isprime(k) && setintersect([2, 3, 5, 7], v=vecsort(digits(k))) == v; \\ Jinyuan Wang, Mar 27 2020
Previous Showing 21-30 of 105 results. Next