cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 75 results. Next

A135089 Triangle T(n,k) = 5*binomial(n,k) with T(0,0) = 1, read by rows.

Original entry on oeis.org

1, 5, 5, 5, 10, 5, 5, 15, 15, 5, 5, 20, 30, 20, 5, 5, 25, 50, 50, 25, 5, 5, 30, 75, 100, 75, 30, 5, 5, 35, 105, 175, 175, 105, 35, 5, 5, 40, 140, 280, 350, 280, 140, 40, 5, 5, 45, 180, 420, 630, 630, 420, 180, 45, 5, 5, 50, 225, 600, 1050, 1260, 1050, 600, 225, 50, 5
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Comments

Row sums = A020714 (except for the first term).
Triangle T(n,k), 0 <= k <= n, read by rows given by (5, -4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (5, -4, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 24 2013

Examples

			First few rows of the triangle:
  1;
  5,  5;
  5, 10,  5;
  5, 15, 15,   5;
  5, 20, 30   20,  5;
  5, 25, 50,  50, 25,  5;
  5, 30, 75, 100, 75, 30, 5.
		

Crossrefs

Programs

  • Magma
    [1] cat [5*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
    
  • Mathematica
    Table[5*Binomial[n,k] -4*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 22 2016; May 03 2021 *)
  • Sage
    def A135089(n,k): return 5*binomial(n,k) - 4*bool(n==0)
    flatten([[A135089(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021

Formula

T(n,k) = 5*binomial(n,k), n > 0, 0 <= k <= n.
Equals 2*A134059(n,k) - A007318(n,k).
G.f.: (1+4*x+4*x*y)/(1-x-x*y). - Philippe Deléham, Nov 24 2013
Sum_{k=0..n} T(n,k) = A020714(n) - 4*[n=0]. - G. C. Greubel, May 03 2021

A146763 Rank of terms ending in 0 in A061039.

Original entry on oeis.org

0, 4, 10, 14, 20, 24, 30, 34, 40, 44, 50, 54, 60, 64, 70, 74, 80, 84, 90, 94, 100, 104, 110, 114, 120, 124, 130, 134, 140, 144, 150, 154, 160, 164, 170, 174, 180, 184, 190, 194, 200, 204, 210, 214, 220, 224, 230, 234, 240, 244, 250, 254, 260, 264, 270, 274
Offset: 0

Views

Author

Paul Curtz, Nov 02 2008

Keywords

Comments

From Paschen spectrum of hydrogen.
Numbers that are congruent to 0 or 4 mod 10. - Philippe Deléham, Oct 18 2011

Crossrefs

Programs

  • Magma
    [5*n - (n mod 2): n in [0..60]]; // G. C. Greubel, Mar 10 2022
    
  • Mathematica
    Select[Range[0, 100], MemberQ[{0,4}, Mod[#, 10]] &] (* K G Teal, Dec 02 2014 *)
  • Sage
    [5*n - (n%2) for n in (0..60)] # G. C. Greubel, Mar 10 2022

Formula

a(n) = 10*n - 6 - a(n-1) (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=4 and b(k) = 5*2^k = A020714(k) for k>0. - Philippe Deléham, Oct 18 2011
From Colin Barker, May 14 2012: (Start)
a(n) = (-1 + (-1)^n + 10*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(4+6*x)/((1-x)^2*(1+x)). (End)
E.g.f.: 1/2 (exp(-x) - (1 - 10*x)*exp(x)). - G. C. Greubel, Mar 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023

A166577 Inverse binomial transform of A166517.

Original entry on oeis.org

1, 4, -5, 10, -20, 40, -80, 160, -320, 640, -1280, 2560, -5120, 10240, -20480, 40960, -81920, 163840, -327680, 655360, -1310720, 2621440, -5242880, 10485760, -20971520, 41943040, -83886080, 167772160, -335544320, 671088640, -1342177280, 2684354560, -5368709120
Offset: 0

Views

Author

Paul Curtz, Oct 17 2009

Keywords

Comments

The definition assumes that the offset of A166517 is changed to 0.
A166517 mod 9 yields a periodic sequence with period 1, 5, 4, 8, 7, 2.
This set of numbers in the period appears also in A153130, A146501, and A166304.

Crossrefs

Programs

  • Mathematica
    Join[{1,4},NestList[-2#&,-5,40]] (* Harvey P. Dale, Aug 02 2012 *)
    Join[{1, 4}, LinearRecurrence[{-2}, {-5}, 48]] (* G. C. Greubel, May 17 2016 *)

Formula

a(n) = -2*a(n-1), n>2.
a(n) = (-1)^(n+1)*A020714(n-2), n>1.
From Colin Barker, Jan 07 2013: (Start)
a(n) = -5*(-1)^n*2^(n-2) for n>1.
G.f.: (3*x^2+6*x+1)/(2*x+1). (End)
E.g.f.: (9/4) + (3/2)*x - (5/4)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited, comments not concerning this sequence removed, and extended by R. J. Mathar, Oct 21 2009

A188381 Negabinary Keith numbers.

Original entry on oeis.org

2, 3, 4, 7, 9, 13, 16, 36, 55, 64, 162, 256, 458, 1024, 1829, 4096, 7316, 15119, 16384, 18970, 37702, 37723, 45171, 60476, 65536, 84506, 262144, 277263, 1048576, 1109052, 1722002, 2160570, 4194304, 10549178, 12699958, 15084573, 16777216, 31921069, 67108864
Offset: 1

Views

Author

Alonso del Arte, Mar 29 2011

Keywords

Comments

Keith numbers are described in A007629. All powers of 4 appear. However, 2 is the only number of the form 2^n with n odd that appears in the sequence. That's because in negabinary, such numbers are represented as 11 followed by n 0's, and that leads to the sequence 1, 1, 0, ... , 0, 2, 3, 5, 10, 20, 40, 80, 160, ... up to 5(2^(n - 2)), and 5(2^(n - 2)) > 2^(n - 1). (See A020714).

Crossrefs

Programs

  • Mathematica
    (* First run the program from A039724 to define ToNegaBases *) keithFromListQ[n_Integer, digits_List] := Module[{seq = digits, curr = digits[[-1]], ord = Length[digits]}, While[curr < n, curr = Plus@@Take[seq, -ord]; AppendTo[seq, curr]]; Return[seq[[-1]] == n]]; Select[Range[2, 32768], keithFromListQ[#, IntegerDigits[ToNegaBases[#, 2]]] &]

Extensions

a(33)-a(39) from Amiram Eldar, Jan 29 2020

A213948 Triangle, by rows, generated from the INVERT transforms of (1, 1, 2, 4, 8, 16, ...).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 4, 4, 1, 7, 10, 8, 8, 1, 12, 24, 20, 16, 16, 1, 20, 52, 56, 40, 32, 32, 1, 33, 112, 144, 112, 80, 64, 64, 1, 54, 238, 344, 320, 224, 160, 128, 128, 1, 88, 496, 828, 848, 640, 448, 320, 256, 256
Offset: 1

Views

Author

Gary W. Adamson, Jun 25 2012

Keywords

Comments

Row sums = A001519, the odd-indexed Fibonacci terms. The triangle is a companion to A213947, having row sums of the even-indexed Fibonacci terms.

Examples

			First few rows of the triangle are:
  1;
  1,   1;
  1,   2,   2;
  1,   4,   4,   4;
  1,   7,  20,   8,   8;
  1,  12,  24,  20,  16,  16;
  1,  20,  52,  56,  40,  32,  32;
  1,  33, 112, 144, 112,  80,  64,  64;
  1,  54, 238, 344, 320, 224, 160, 128, 128;
  1,  88, 496, 828, 848, 640, 448, 320, 256, 256;
  ...
		

Crossrefs

Cf. A001519, A213947, A000071 (2nd column), A020714 (subdiagonal), A005009 (subdiagonal).

Programs

  • Maple
    read("transforms") ;
    A213948i := proc(n,k)
        if n = 1 then
            L := [1,seq(0,i=0..k)] ;
        else
            L := [1,seq(2^i,i=0..n-2),seq(0,i=0..k)] ;
        end if;
        INVERT(L) ;
        op(k,%) ;
    end proc:
    A213948 := proc(n,k)
        if k = 1 then
            1;
        else
            A213948i(k,n)-A213948i(k-1,n) ;
        end if;
    end proc: # R. J. Mathar, Jun 30 2012

Formula

Create an array in which the n-th row is the INVERT transform of the first n terms in the sequence (1, 1, 2, 4, 8, 16, 32, ...):
1, 1, 1, 1, 1, 1,
1, 2, 3, 5, 8, 13, (essentially A000045)
1, 2, 5, 9, 18, 37, (essentially A077947)
1, 2, 5, 13, 26, 57,
Terms of the n-th row of the triangle are the finite differences downwards the n-th column of this array.

A287798 Least k such that A006667(k)/A006577(k) = 1/n.

Original entry on oeis.org

159, 6, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 3

Views

Author

Michel Lagneau, Jun 01 2017

Keywords

Comments

A006667: number of tripling steps to reach 1 in '3x+1' problem.
A006577: number of halving and tripling steps to reach 1 in '3x+1' problem.
a(n) = {159, 6} union {A020714}.

Examples

			a(3) = 159 because A006667(159)/A006577(159) = 18/54 = 1/3.
		

Crossrefs

Cf. A006577, A006666, A006667. Essentially the same as A020714, A084215, A146523 and A257113.

Programs

  • Maple
    nn:=10^12:
    for n from 3 to 35 do:
    ii:=0:
    for k from 2 to 10^6 while(ii=0) do:
      m:=k:s1:=0:s2:=0:
       for i from 1 to nn while(m<>1) do:
        if irem(m,2)=0
         then
         s2:=s2+1:m:=m/2:
         else
         s1:=s1+1:m:=3*m+1:
        fi:
       od:
        if n*s1=s1+s2
         then
         ii:=1: printf(`%d, `,k):
         else
        fi:
    od:od:
  • Mathematica
    f[u_]:=Module[{a=u,k=0},While[a!=1,k++;If[EvenQ[a],a=a/2,a=a*3+1]];k];Table[f[u],{u,10^7}];g[v_]:=Count[Differences[NestWhileList[If[EvenQ[#],#/2,3#+1]&,v,#>1&]],_?Positive];Table[g[v],{v,10^7}];Do[k=3;While[g[k]/f[k]!=1/n,k++];Print[n," ",k],{n,3,35}]
  • PARI
    a(n) = if(n < 5, [0,0,159,6][n], 5<<(n-5)) \\ David A. Corneth, Jun 01 2017
    
  • PARI
    Vec(x^3*(159 - 312*x - 7*x^2) / (1 - 2*x) + O(x^50)) \\ Colin Barker, Jun 01 2017

Formula

For n >= 5, a(n) = 5*2^n/32. - David A. Corneth, Jun 01 2017
From Colin Barker, Jun 01 2017: (Start)
G.f.: x^3*(159 - 312*x - 7*x^2) / (1 - 2*x).
a(n) = 2*a(n-1) for n>5.
(End)

A309786 a(n) is the length of the cycle of the trajectory of 1/n under the map f(x) = min(2*x, 2-2*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, 3, 4, 1, 4, 3, 9, 2, 6, 5, 11, 1, 10, 6, 9, 3, 14, 4, 5, 1, 5, 4, 12, 3, 18, 9, 12, 2, 10, 6, 7, 5, 12, 11, 23, 1, 21, 10, 8, 6, 26, 9, 20, 3, 9, 14, 29, 4, 30, 5, 6, 1, 6, 5, 33, 4, 22, 12, 35, 3, 9, 18, 20, 9, 30, 12
Offset: 1

Views

Author

Rémy Sigrist, Aug 17 2019

Keywords

Comments

For any rational number q in the interval [0, 1]:
- f(q) is rational and lies in the interval [0, 1],
- denominator(f(q)) <= denominator(q),
- as there are only finitely many rational numbers whose denominator is less than or equal to that of q in the interval [0, 1],
- iteratively applying f to q eventually leads to a cycle,
- and the sequence is well defined.
For any irrational number x in the interval [0, 1]:
- f(x) is irrational and lies in the interval [0, 1],
- for any k > 0, as fixed points of the k-th iterate of f are rational,
- iteratively applying f to x never leads to a cycle.
As f is continuous on the interval [0, 1] and 1/7 has least period 3, according to the period three theorem, f has points of any period length, as well as chaotic points.

Examples

			For n = 5:
- f(1/5) = 2/5,
- f(2/5) = 4/5,
- f(4/5) = 2/5,
- hence a(5) = 2.
		

Crossrefs

Programs

  • PARI
    a(n, f=x -> min(2*x, 2-2*x)) = my (x=f(1/n), y=f(x)); while (x!=y, x=f(x); y=f(f(y))); for (k=1, oo, if (x==y=f(y), return (k)))

Formula

a(2*n-1) = A003558(n-1).
a(2*n) = a(n).
a(n) = 1 iff n belongs to A029744.
a(n) = 2 iff n belongs to A020714.

A321643 a(n) = 5*2^n - (-1)^n.

Original entry on oeis.org

4, 11, 19, 41, 79, 161, 319, 641, 1279, 2561, 5119, 10241, 20479, 40961, 81919, 163841, 327679, 655361, 1310719, 2621441, 5242879, 10485761, 20971519, 41943041, 83886079, 167772161, 335544319, 671088641, 1342177279, 2684354561, 5368709119, 10737418241, 21474836479
Offset: 0

Views

Author

Paul Curtz, Dec 03 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..30],n->5*2^n-(-1)^n); # Muniru A Asiru, Dec 05 2018
    
  • Maple
    [5*2^n-(-1)^n$n=0..30]; # Muniru A Asiru, Dec 05 2018
  • Mathematica
    a[n_] := 5*2^n - (-1)^n; Array[a, 30, 0] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    Vec((4 + 7*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 04 2018
    
  • Python
    for n in range(0,30): print(5*2**n - (-1)**n) # Stefano Spezia, Dec 05 2018

Formula

a(n+2) - a(n) = a(n+1) + a(n) = 15*2^n, n >= 0.
a(n) - 2*a(n-1) = period 2: repeat [3, -3], n > 0, a(0)=4, a(1)=11.
a(n+1) = 10*A051049(n) + period 2: repeat [1, 9].
a(n) = 12*2^n - A321483(n), n >= 0.
a(n) = 2^(n+2) + 3*A001045(n), n >= 0.
a(n) == A070366(n+4) (mod 9).
From Colin Barker, Dec 04 2018: (Start)
G.f.: (4 + 7*x) / ((1 + x)*(1 - 2*x)).
a(n) = a(n-1) + 2*a(n-2) for n > 1. (End)
E.g.f.: exp(-x)*(5*exp(3*x) - 1). - Elmo R. Oliveira, Aug 17 2024

A335491 a(n) is the smallest number m with exactly n divisors whose last digit equals the last digit of m.

Original entry on oeis.org

1, 11, 40, 60, 160, 120, 640, 240, 360, 480, 8064, 600, 18144, 1920, 1440, 1200, 72576, 1800, 52416, 2400, 5760, 30720, 183456, 3600, 12960, 122880, 9000, 9600, 602784, 7200, 445536, 8400, 92160, 798336, 51840, 12600, 2159136, 576576, 368640, 16800, 2935296, 28800
Offset: 1

Views

Author

Bernard Schott, Jun 11 2020

Keywords

Comments

a(n) exists for any n >= 1. Indeed, the number 5*2^n (see A020714), n >= 1, has exactly n divisors (5*2^1, 5*2^2, ..., 5*2^n), with the last digit 0. - Marius A. Burtea, Jun 12 2020
It's always the case when a(n) ends in 0 then a(n) = 10 * A005179(n). Proof: Let v be the list of divisors of a(n) that end in 0. We then have |v| = n and lcm(v) = a(n) as a(n) is in v and all other terms in v divide a(n). We then have lcm(v)/10 = a(n)/10 where a(n)/10 has exactly n divisors. The least positive integer that has exactly n divisors is A005179(n). - Bernard Schott and David A. Corneth, Jun 12 2020
For some p_i^e_i||a(n) and p_j^e_j||a(n) where p_i and p_j are primes such that p_i < p_j, 10 | (p_j - p_i) and t^k||u denotes t^k|u but t^(k + 1) doesn't divide u i.e. gcd(t, u/t^k) = 1 denotes then e_i >= e_j. For example k * 11^2 * 31^3 where gcd(k, 11*31) = 1 can't be a term as the multiplicity of 11 is less than the multiplicity of 31. - David A. Corneth, Jun 12 2020

Examples

			Of the twelve divisors of 60, four have their last digit equals to the last digit of 60: 10, 20, 30 and 60, and there is no smaller number k with four divisors whose last digit equals the last digit of k, hence a(4) = 60.
		

Crossrefs

Similar with: A333456 (Niven numbers), A335038 (Zuckerman numbers).

Programs

  • Magma
    a:=[]; for n in [1..30] do k:=1; while #[d:d in Divisors(k)|k mod 10 eq d mod 10] ne n do k:=k+1; end while; Append(~a,k); end for; a; // Marius A. Burtea, Jun 12 2020
  • Mathematica
    d[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; mx = 20; c = 0; n = 1; s = Table[0, {mx}]; While[c < mx, i = d[n]; If[i <= mx && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Jun 12 2020 *)
  • PARI
    f(n) = my(u=n%10); sumdiv(n, d, (d%10) == u);
    a(n) = my(k=1); while(f(k) != n, k++); k; \\ Michel Marcus, Jun 12 2020
    

Extensions

Corrected and extended by Marius A. Burtea, Jun 12 2020

A341329 Numbers k such that k^2 is the sum of m nonzero squares for all 1 <= m <= k^2 - 14.

Original entry on oeis.org

13, 15, 17, 25, 26, 29, 30, 34, 35, 37, 39, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137
Offset: 1

Views

Author

Jianing Song, Feb 09 2021

Keywords

Comments

Numbers k such that k^2 is in A018820. Note that k^2 is never the sum of k^2 - 13 positive squares.
A square k^2 is the sum of m positive squares for all 1 <= m <= k^2 - 14 if k^2 is the sum of 2 and 3 positive squares (see A309778 and proof in Kuczma).
Intersection of A009003 and A005767. Also A009003 \ A020714.
Numbers k not of the form 5*2^e such that k has at least one prime factor congruent to 1 modulo 4.
Has density 1 over all positive integers.

Examples

			13 is a term: 169 = 13^2 = 5^2 + 12^2 = 3^2 + 4^2 + 12^2 = 11^2 + 4^2 + 4^2 + 4^2 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2 = 6^2 + 6^2 + 6^2 + 6^2 + 4^2 + 3^2 = ... = 3^2 + 2^2 + 2^2 + 1^2 + 1^2 + ... + 1^2 (sum of 155 positive squares, with 152 (1^2)'s), but 169 cannot be represented as the sum of 156 positive squares.
		

References

  • Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.

Crossrefs

Programs

  • PARI
    isA341329(n) = setsearch(Set(factor(n)[, 1]%4), 1) && !(n/5 == 2^valuation(n, 2))
Previous Showing 51-60 of 75 results. Next