cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A021018 Decimal expansion of 1/14.

Original entry on oeis.org

0, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1
Offset: 0

Views

Author

Keywords

Examples

			0.0714285714285...
		

Crossrefs

Cf. A020806.

Programs

  • Mathematica
    First[RealDigits[1/14, 10, 100, -1]] (* Paolo Xausa, Sep 16 2024 *)

A153110 Period 6: repeat [1, 5, 7, 2, 4, 8].

Original entry on oeis.org

1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8
Offset: 0

Views

Author

Paul Curtz, Dec 18 2008

Keywords

Comments

Also A141425^5 mod 9. See A020806.

Crossrefs

Programs

Formula

From R. J. Mathar, Mar 08 2011: (Start)
a(n) = - a(n-1) + a(n-3) + a(n-4) for n>3.
G.f.: (2*x+1)^3 / ( (1-x)*(1+x)*(1+x+x^2) ). (End)
a(n) = (9-cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6))/2. - Wesley Ivan Hurt, Jun 17 2016

A154127 Period 6: repeat [1, 2, 5, 8, 7, 4].

Original entry on oeis.org

1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2
Offset: 0

Views

Author

Paul Curtz, Jan 05 2009

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Feb 25 2009, Mar 09 2009: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: (1+x+3*x^2+4*x^3)/((1-x)*(1+x)*(x^2-x+1)). (End)
a(n) = (27-cos(n*Pi)-20*cos(n*Pi/3)-4*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 17 2016

Extensions

Corrected numerator in g.f R. J. Mathar, Mar 09 2009

A021025 Decimal expansion of 1/21.

Original entry on oeis.org

0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7
Offset: 0

Views

Author

Keywords

Examples

			0.047619047...
		

Crossrefs

Cf. A010701 (1/3), A020806 (1/7).

Programs

A241217 Largest number that when multiplied by 7 produces an n-digit number.

Original entry on oeis.org

1, 14, 142, 1428, 14285, 142857, 1428571, 14285714, 142857142, 1428571428, 14285714285, 142857142857, 1428571428571, 14285714285714, 142857142857142, 1428571428571428, 14285714285714285, 142857142857142857, 1428571428571428571, 14285714285714285714
Offset: 1

Views

Author

J. Lowell, Apr 17 2014

Keywords

Comments

The definition "largest number that when multiplied by 3 produces an n-digit number" gives A002277.

Examples

			14*7 = 98 but 15*7 = 105 (too large) so a(2) = 14.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 34 at p. 62.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11,-10,-1,11,-10},{1,14,142,1428,14285},30] (* Harvey P. Dale, Mar 03 2024 *)
  • PARI
    a(n) = floor(10^n/7); \\ Michel Marcus, Apr 21 2014

Formula

a(n) = floor(10^n/7). - Michel Marcus, Apr 21 2014
G.f.: x*(1+3*x-2*x^2+7*x^3)/((x-1)*(10*x-1)*(x+1)*(x^2-x+1)). - Alois P. Heinz, Apr 30 2014
E.g.f.: (3*cosh(10*x) - 7*cosh(x) + 2*exp(x/2)*(2*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) - 14*sinh(x) + 3*sinh(10*x))/21. - Stefano Spezia, Jul 31 2024

Extensions

More terms from Michel Marcus, Apr 21 2014

A021060 Decimal expansion of 1/56.

Original entry on oeis.org

0, 1, 7, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Same decimal period as A020806. - R. J. Mathar, Feb 13 2012

Examples

			0.017857142857..
		

Crossrefs

Cf. A020806.

Programs

  • Mathematica
    Join[{0},RealDigits[1/56,10,120][[1]]] (* or *) PadRight[{0,1,7},120,{1,4,2,8,5,7}] (* Harvey P. Dale, Feb 04 2019 *)

A091720 Babylonian sexagesimal (base 60) expansion of 1/7.

Original entry on oeis.org

8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17, 8, 34, 17
Offset: 0

Views

Author

Jeppe Stig Nielsen, Feb 01 2004

Keywords

Crossrefs

Programs

A144453 a(n) = A061039(8*n+5).

Original entry on oeis.org

16, 160, 16, 832, 1360, 224, 2800, 3712, 176, 5920, 7216, 320, 10192, 11872, 1520, 15616, 17680, 736, 22192, 24640, 336, 29920, 32752, 3968, 38800, 42016, 560, 48832, 52432, 2080, 60016, 64000, 7568, 72352, 76720, 3008, 85840, 90592, 3536, 100480, 105616
Offset: 0

Views

Author

Paul Curtz, Oct 07 2008

Keywords

Comments

Numerators of 16*(n+1)*(4*n+1)/(9*(8*n+5)^2), so all numbers are multiples of 16 because the denominator is always odd.
Interpreted modulo 9, all numbers from 1 to 8 appear: a(20) is the first entry = 3 (mod 9), a(26) is the first entry = 2 (mod 9), a(80) is the first entry = 6 (mod 9).

Crossrefs

Programs

  • Mathematica
    Numerator[1/9 - 1/(8*Range[0,100] +5)^2] (* G. C. Greubel, Mar 07 2022 *)
  • Sage
    [numerator(1/9 - 1/(8*n+5)^2) for n in (0..100)] # G. C. Greubel, Mar 07 2022

Formula

a(n) = A061039(8*n+5).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n>83. - Colin Barker, Oct 10 2016

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008

A216606 Decimal expansion of 360/7.

Original entry on oeis.org

5, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7
Offset: 2

Views

Author

Paul Curtz, Sep 10 2012

Keywords

Comments

A020806 preceded by a 5.
Number of degrees in the exterior angle of an equilateral heptagon. Since 1969, used in many (orbiform or Reuleaux) heptagonal coins. Zambia has a natural heptagonal coin. Brazil and Costa Rica have a coin with the natural heptagon inscribed in the coin's disk.

Examples

			51.42857...
		

Crossrefs

Programs

Formula

a(n) = 50 + 10*A020806(n).
After 5, of period 6: repeat [1, 4, 2, 8, 5, 7].
From Wesley Ivan Hurt, Jun 28 2016: (Start)
G.f.: x^3*(5-4*x+3*x^2+3*x^3+2*x^4) / (1-x+x^3-x^4).
a(n) = 9/2 + 11*cos(n*Pi)/6 + 5*cos(n*Pi/3)/3 + sqrt(3)*sin(n*Pi/3), n>2.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>6, a(n) = a(n-6) for n>8. (End)

A021032 Decimal expansion of 1/28.

Original entry on oeis.org

0, 3, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5
Offset: 0

Views

Author

Keywords

Comments

Same decimal period as A020806. - R. J. Mathar, Feb 13 2011

Examples

			0.0357142857142857142857142857142857142857142857...
		

Programs

  • Mathematica
    Join[{0},RealDigits[1/28,10,98][[1]]] (* Stefano Spezia, Apr 22 2025 *)
Previous Showing 11-20 of 36 results. Next