cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A158691 The number of upper-triangular matrices with at least one nonzero entry in each row and whose entries sum to n.

Original entry on oeis.org

1, 1, 3, 12, 61, 380, 2815, 24213, 237348, 2612681, 31915787, 428481472, 6271362282, 99388642292, 1695614865711, 30984649882928, 603790447393402, 12498732438500663, 273902239550757626, 6334968666307580051, 154211723833861061644, 3941258052200287007636
Offset: 0

Views

Author

Peter Bala, Mar 24 2009

Keywords

Comments

There is a connection with the alternating series 1 - (1-x) + (1-x)(1-x^2) - (1-x)(1-x^2)(1-x^3) + .... Namely, if we replace x with 1/(1-x) in the partial sum 1 - (1-x) + (1-x)(1-x^2) - (1-x)(1-x^2)(1-x^3) + ... + (-1)^n(1-x)(1-x^2)...(1-x^n) and then expand about x = 0 we get a series whose first n+1 coefficients agree with the first n+1 terms of the present sequence.
From Vít Jelínek, Sep 04 2014: (Start)
The above remark, first conjectured by Bala, is a consequence of the identities satisfied by the generating function for a(n). More precisely, the generating function F(x)=Sum_{n>=0} a(n)x^n can be expressed by any of these three formulas:
F(x) = Sum_{n>=0} Product_{i=1..n} (1-(1-x)^(2*i-1))
F(x) = Sum_{n>=0} Product_{i=1..n} (1/(1-x)^i - 1)
F(x) = Sum_{n>=0} (1-x)^(n+1) Product_{i=1..n} (1-(1-x)^(2*i))
The first two formulas were conjectured to be equal by Bala. This was confirmed by Andrews and Jelínek, who also derived the third formula.
Bringmann, Li and Rhoades have independently derived the three formulas above, and additionaly, they proved that
F(x) = (1/2)*Sum_{n>=0} Product_{i=1..n} (1/(1+(1-x)^i)).
(End)
From Vít Jelínek, Feb 12 2012: (Start)
a(n) has the following combinatorial interpretations:
(1) the number of upper-triangular nonnegative integer matrices with at least one positive entry in each row, whose entries sum to n. E.g., for n=2 this corresponds to these three matrices (with zeros represented as dots):
(2), (1.) and (.1)
(.1) (.1)
(2) the number of upper-triangular nonnegative matrices that are symmetric along the northeast diagonal, have no positive entry on the northeast diagonal, have at least one positive entry in every row and column, and their entries sum to 2n. These are the three such matrices with n=2:
(2.), (11.) and (1...)
(.2) (..1) (.1..)
(..1) (..1.)
(...1)
(3) the number of upper-triangular nonnegative matrices that are symmetric along the northeast diagonal, have at least one positive entry on the northeast diagonal, have at least one positive entry in every row and column, and their entries on or above the northeast diagonal sum to n. These are the three such matrices with n=2:
(2), (11) and (1..)
(.1) (.1.)
(..1)
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + 380*x^5 + 2815*x^6 +...
		

Crossrefs

Programs

  • Maple
    g:=sum(product(1-(1-x)^(2*i-1), i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19); # by definition
    g:=sum((-1)^n*product(1-1/(1-x)^i, i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ Product[ 1 - (1 - x)^(2 i - 1), {i, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, 1/(1-x)^k-1, 1+x*O(x^n))), n)} /* Paul D. Hanna, Jan 29 2012 */
    
  • PARI
    /* G.f. as a Continued Fraction: */
    {a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1/(1 - (1-x)^(n-k+1)*(1-(1-x)^(n-k+2))*CF)); polcoeff(1/(1-x*CF), n, x)} /* Paul D. Hanna, Jan 29 2012 */

Formula

Sum_{n >= 0} Product_{i= 1..n} (1-(1-x)^(2*i-1)) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + .... Compare with A022493, A138265 and A158690.
G.f.: Sum_{n>=0} Product_{k=1..n} [1/(1-x)^k - 1].
G.f.: 1/(1 - (1-(1-x))/(1 - (1-x)*(1-(1-x)^2)/(1 - (1-x)^2*(1-(1-x)^3)/(1 - (1-x)^3*(1-(1-x)^4)/(1 - (1-x)^4*(1-(1-x)^5)/(1 -...)))))), a continued fraction. - Paul D. Hanna, Jan 29 2012
By results of Bringmann, Li and Rhoades, a(n) is asymptotically c*n!*(12/Pi^2)^n, with c=6*sqrt(2)*exp(Pi^2/24)/Pi^2, and the ratio a(n)/A179525(n) tends to exp(Pi^2/12). - Vít Jelínek, Sep 04 2014
From Peter Bala, May 16 2017: (Start)
G.f. 1/2*( 1 + Sum_{n >= 0} 1/(1 - x)^((n+1)*(n+2)/2) * Product_{i = 1..n} (1 - (1 - x)^i) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 - x)^((n+1)*(2*n+1)) * Product_{i = 1..2*n} ((1 - x)^i - 1). (End)

A175579 Triangle T(n,d) read by rows: Number of ascent sequences of length n with d zeros.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 21, 12, 4, 1, 53, 84, 54, 20, 5, 1, 217, 380, 270, 110, 30, 6, 1, 1014, 1926, 1490, 660, 195, 42, 7, 1, 5335, 10840, 9020, 4300, 1365, 315, 56, 8, 1, 31240, 67195, 59550, 30290, 10255, 2520, 476, 72, 9, 1, 201608, 455379, 426405
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The first column and the row sums are both A022493.
Also the number of length-n ascent sequences with k fixed points. [Joerg Arndt, Nov 03 2012]

Examples

			The triangle starts:
01:       1;
02:       1,      1;
03:       2,      2,      1;
04:       5,      6,      3,      1;
05:      15,     21,     12,      4,     1;
06:      53,     84,     54,     20,     5,     1;
07:     217,    380,    270,    110,    30,     6,    1;
08:    1014,   1926,   1490,    660,   195,    42,    7,   1;
09:    5335,  10840,   9020,   4300,  1365,   315,   56,   8,  1;
10:   31240,  67195,  59550,  30290, 10255,  2520,  476,  72,  9,  1;
11:  201608, 455379, 426405, 229740, 82425, 21448, 4284, 684, 90, 10, 1;
...
From _Joerg Arndt_, Mar 05 2014: (Start)
The 15 ascent sequences of length 4 (dots for zeros) together with their numbers of zeros and numbers of fixed points are:
01:    [ . . . . ]   4   1
02:    [ . . . 1 ]   3   1
03:    [ . . 1 . ]   3   1
04:    [ . . 1 1 ]   2   1
05:    [ . . 1 2 ]   2   1
06:    [ . 1 . . ]   3   2
07:    [ . 1 . 1 ]   2   2
08:    [ . 1 . 2 ]   2   2
09:    [ . 1 1 . ]   2   2
10:    [ . 1 1 1 ]   1   2
11:    [ . 1 1 2 ]   1   2
12:    [ . 1 2 . ]   2   3
13:    [ . 1 2 1 ]   1   3
14:    [ . 1 2 2 ]   1   3
15:    [ . 1 2 3 ]   1   4
Both statistics give row 4: [5, 6, 3, 1].
(End)
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
T(2n,n) gives A357309.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(j=0, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, -1$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == 0, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, -1, -1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=0,n+1,prod(j=0,m-1,(1-(1-x)^j*(1-x*y) +x^2*y^2*O(x^n*y^d)))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))
    
  • PARI
    {T(n,d)=polcoeff(polcoeff(sum(m=1,n+1,x*y/(1-x*y +x*y*O(x^n*y^d))^m*prod(j=1,m-1,(1-(1-x)^j))),n+1,x),d+1,y)} /* Paul D. Hanna, Feb 18 2012 */
    for(n=0,10,for(d=0,n,print1(T(n,d),", "));print(""))

Formula

The bivariate g.f. A(x,y) = Sum_{n>=1, d=1..n} T(n,d)*x^(n+1)*y^(d+1) can be given in two forms (see Remmel and Kitaev, or Levande link):
(1) A(x,y) = Sum_{n>=1} Product_{k=0..n-1} (1 - (1-x)^k*(1-x*y)),
(2) A(x,y) = Sum_{n>=1} x*y/(1-x*y)^n * Product_{k=1..n-1} (1 - (1-x)^k).

Extensions

Corrected offset, Joerg Arndt, Nov 03 2012

A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
Second column is A000225 (2^n - 1).
Third column appears to be A000392 (Stirling numbers S(n,3)).
Second diagonal (from the right) appears to be A006127 (2^n + n).

Examples

			Triangle starts:
1;
1,    1;
1,    3,     1;
1,    7,     6,      1;
1,   15,    25,     11,      1;
1,   31,    90,     74,     20,      1;
1,   63,   301,    402,    209,     37,      1;
1,  127,   966,   1951,   1629,    590,     70,     1;
1,  255,  3025,   8869,  10839,   6430,   1685,   135,     1;
1,  511,  9330,  38720,  65720,  56878,  25313,  4870,   264,   1;
1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
...
The 53 ascent sequences of length 5 are (dots for zeros):
[ #]     ascent-seq.   #max digit
[ 1]    [ . . . . . ]   0
[ 2]    [ . . . . 1 ]   1
[ 3]    [ . . . 1 . ]   1
[ 4]    [ . . . 1 1 ]   1
[ 5]    [ . . . 1 2 ]   2
[ 6]    [ . . 1 . . ]   1
[ 7]    [ . . 1 . 1 ]   1
[ 8]    [ . . 1 . 2 ]   2
[ 9]    [ . . 1 1 . ]   1
[10]    [ . . 1 1 1 ]   1
[11]    [ . . 1 1 2 ]   2
[12]    [ . . 1 2 . ]   2
[13]    [ . . 1 2 1 ]   2
[14]    [ . . 1 2 2 ]   2
[15]    [ . . 1 2 3 ]   3
[16]    [ . 1 . . . ]   1
[17]    [ . 1 . . 1 ]   1
[18]    [ . 1 . . 2 ]   2
[19]    [ . 1 . 1 . ]   1
[20]    [ . 1 . 1 1 ]   1
[21]    [ . 1 . 1 2 ]   2
[22]    [ . 1 . 1 3 ]   3
[23]    [ . 1 . 2 . ]   2
[24]    [ . 1 . 2 1 ]   2
[25]    [ . 1 . 2 2 ]   2
[26]    [ . 1 . 2 3 ]   3
[27]    [ . 1 1 . . ]   1
[28]    [ . 1 1 . 1 ]   1
[29]    [ . 1 1 . 2 ]   2
[...]
[49]    [ . 1 2 3 . ]   3
[50]    [ . 1 2 3 1 ]   3
[51]    [ . 1 2 3 2 ]   3
[52]    [ . 1 2 3 3 ]   3
[53]    [ . 1 2 3 4 ]   4
There is 1 sequence with maximum zero, 15 with maximum one, etc.,
therefore the fifth row is 1, 15, 25, 11, 1.
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A175579 (ascent sequences with k zeros).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).

A218579 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last zero at position k-1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 8, 10, 15, 53, 15, 26, 32, 38, 53, 217, 53, 99, 122, 142, 164, 217, 1014, 217, 433, 537, 619, 704, 797, 1014, 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335, 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
First column and the diagonal is A022493(n-1).

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,    1;
[ 3]      2,    1,     2;
[ 4]      5,    2,     3,     5;
[ 5]     15,    5,     8,    10,    15;
[ 6]     53,   15,    26,    32,    38,    53;
[ 7]    217,   53,    99,   122,   142,   164,   217;
[ 8]   1014,  217,   433,   537,   619,   704,   797,  1014;
[ 9]   5335, 1014,  2143,  2683,  3069,  3464,  3876,  4321,  5335;
[10]  31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240;
...
		

Crossrefs

Cf. A022493 (number of ascent sequences).
Cf. A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>i, 1, 0), max(-1, k-1)),
                 j=`if`(k>=0, 0, 1)..`if`(k=0, 0, t+1)))
        end:
    T:= (n, k)-> b(n-1, 0, 0, k-2):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 16 2012
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, Sum[b[n-1, j, t + If[j>i, 1, 0], Max[-1, k-1]], {j, If[k >= 0, 0, 1], If[k == 0, 0, t+1]}]]; T[n_, k_] := b[n-1, 0, 0, k-2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)

A289314 Number of n X n Fishburn matrices with entries in the set {0,1,2}.

Original entry on oeis.org

1, 2, 12, 264, 19632, 4606752, 3311447232, 7202118117504, 47151987852663552, 927337336972381327872, 54741643544083873448266752, 9696222929066933463021344262144, 5152757080697434799933013959862300672, 8215035458438940398186389046297459974152192
Offset: 0

Views

Author

Peter Bala, Jul 03 2017

Keywords

Comments

A Fishburn matrix is defined to be an upper-triangular matrix with nonnegative integer entries such that each row and column contains a nonzero entry. See A005321 for primitive Fishburn matrices of dimension n, that is, Fishburn matrices of dimension n with entries in the set {0,1}.
The present sequence has an alternative description as the number of primitive Fishburn matrices of dimension n where the 1's may be colored either black or white.

Examples

			a(2) = 12: The twelve 2 X 2 Fishburn matrices with entries 0, 1 or 2 are
/1 0\  /1 0\  /2 0\  /2 0\
\0 1/  \0 2/  \0 1/  \0 2/
/1 1\  /1 2\  /1 1\  /1 2\  /2 1\  /2 2\  /2 1\  /2 2\.
\0 1/  \0 1/  \0 2/  \0 2/  \0 1/  \0 1/  \0 2/  \0 2/
Alternatively, the twelve 2-colored primitive Fishburn matrices of dimension 2 (using +1 and -1 for the two different colored versions of 1) are
/+-1  0\ (4 possibilities)
\0  +-1/
   and
/+-1 +-1\ (8 possibilities).
\ 0  +-1/
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get a(0)..a(N)
    g:= add(x^n*mul((3^i-1)/(1+x*(3^i-1)),i=1..n),n=0..N):
    S:= series(g,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 11 2017
  • Mathematica
    QP = QPochhammer; nmax = 14;
    Sum[(-1)^n (1-x)^(-n-1) x^n QP[3, 3, n]/QP[x/(x-1), 3, n+1], {n, 0, nmax}] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2018 *)

Formula

O.g.f.: A(x) = Sum_{n >=0} x^n Product_{i = 1..n} (3^i - 1)/(1 + x*(3^i - 1)) = 1 + 2*x + 12*x^2 + 264*x^3 + ... (use Jelínek, Theorem 2.1 with v = w = x = y = 2).
Two conjectural continued fractions for the o.g.f.:
A(x) = 1/(1 - 2*x/(1 - 4*x/(1 - 24*x/(1 - 64*x/(1 - 234*x/(1 - 676*x/(1 - ... - 3^(n-1)*(3^n - 1)*x/(1 - (3^n - 1)^2*x/(1 - ...))))))))) and
A(x) = 1 + 2*x/(1 - 6*x/(1 - 16*x/(1 - 72*x/(1 - 208*x/(1 - ... - 3^n*(3^n - 1)*x/(1 - (3^(n+1) - 1)*(3^n - 1)*x/(1 - ...))))))).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(1/3)^2 = 0.313741223174946734265526469975707962872482170305592991802056615373429729... - Vaclav Kotesovec, Aug 31 2023, updated Mar 17 2024

A289315 Number of n X n Fishburn matrices with entries in the set {0,1,2,3}.

Original entry on oeis.org

1, 3, 36, 2052, 505764, 511718148, 2088275673636, 34176650317115652, 2239082850356711468964, 586908388119824949146284548, 615402202729113953115253336166436, 2581165458211746544190089033131172341252, 43304685245392697816407075492352986194550240164
Offset: 0

Views

Author

Peter Bala, Jul 03 2017

Keywords

Comments

A Fishburn matrix is defined to be an upper-triangular matrix with nonnegative integer entries such that each row and column contains a nonzero entry. See A005321 for primitive Fishburn matrices of dimension n, that is, Fishburn matrices of dimension n with entries in the set {0,1}.
The present sequence has an alternative description as the number of primitive Fishburn matrices of dimension n where each entry equal to 1 can have one of three different colors. Cf. A289314.

Examples

			a(2) = 36: The 36 2 X 2 Fishburn matrices with entries 0, 1, 2 or 3 are
/1 0\ /1 0\ /2 0\ /2 0\
\0 1/ \0 2/ \0 1/ \0 2/
/1 0\ /3 0\ /3 0\
\0 3/ \0 1/ \0 3/
/2 0\ /3 0\
\0 3/ \0 2/
/1 2\ /1 1\ /1 2\ /2 1\ /2 2\ /2 1\ /2 2\
\0 1/ \0 2/ \0 2/ \0 1/ \0 1/ \0 2/ \0 2/
/1 1\ /1 3\ /1 1\ /1 3\ /3 1\ /3 3\ /3 1\
\0 1/ \0 1/ \0 3/ \0 3/ \0 1/ \0 1/ \0 3/
/2 3\ /2 2\ /2 3\ /3 2\ /3 3\ /3 2\ /3 3\
\0 2/ \0 3/ \0 3/ \0 2/ \0 2/ \0 3/ \0 3/
/1 2\ /1 3\ /2 3\ /2 1\ /3 1\ /3 2\.
\0 3/ \0 2/ \0 1/ \0 3/ \0 2/ \0 1/
Alternatively, the 36 3-colored primitive Fishburn matrices of dimension 2 (using 1_j, j = 1,2,3 to denote the three different colored versions of 1) are
/1_j  0\ (9 possibilities)
\ 0 1_j/
and
/1_j 1_j\ (27 possibilities).
\ 0  1_j/
		

Crossrefs

Programs

  • Maple
    G:= add(x^n*mul((4^i-1)/(1+x*(4^i-1)), i=1..n),n=0..40):
    S:= series(G,x,41):
    seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
  • Mathematica
    Table[SeriesCoefficient[Sum[x^j*Product[(4^i - 1)/(1 + x (4^i - 1)), {i, j}], {j, 0, n}], {x, 0, n}], {n, 0, 12}] (* Michael De Vlieger, Jul 10 2017, after Maple by Robert Israel *)

Formula

O.g.f.: A(x) = Sum_{n >= 0} x^n Product_{i = 1..n} (4^i - 1)/(1 + x*(4^i - 1)) = 1 + 3*x + 36*x^2 + 2052*x^3 + ... (use Jelínek, Theorem 2.1 with v = w = x = y = 3).
Two conjectural continued fractions for the o.g.f.:
A(x) = 1/(1 - 3*x/(1 - 9*x/(1 - 60*x/(1 - 225*x/(1 - 1008*x/(1 - 3969*x/(1 - ... - 4^(n-1)*(4^n - 1)*x/(1 - (4^n - 1)^2*x/(1 - ...))))))))) and
A(x) = 1 + 3*x/(1 - 12*x/(1 - 45*x/(1 - 240*x/(1 - 945*x/(1 - ... - 4^n*(4^n - 1)*x/(1 - (4^(n+1) - 1)*(4^n - 1)*x/(1 - ...))))))).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(1/4)^2 = 0.474083940023743191581900099468175063640311684514259231... - Vaclav Kotesovec, Aug 31 2023, updated Mar 17 2024

A202058 Number of ascent sequences avoiding the pattern 000.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 83, 277, 1015, 4007, 17047, 77451, 374889, 1923168, 10427250, 59544957, 357236992, 2245822801, 14762969601, 101264286082, 723499803180, 5375063821727, 41459660565329, 331546282841906, 2745163969235517, 23505333233440927, 207895424692608432
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493. Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317; 0000 is A317784.
Column k=2 of A294220.

Programs

  • Mathematica
    b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n==0, 1, Sum[If[Coefficient[ p, x, j]==k, 0, b[n-1, j, t + If[j>i, 1, 0], p+x^j, k]], {j, 1, t+1}]];
    a[n_] := b[n, 0, 0, 0, Min[n, 2]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Sep 01 2018, after Alois P. Heinz in A294220 *)

Extensions

a(15)-a(17) from Alois P. Heinz, Nov 09 2012
a(18)-a(20) from Giovanni Resta, Jan 06 2014
a(21) from Vaclav Kotesovec, Aug 21 2018
a(22) from Vaclav Kotesovec, Aug 22 2018
More terms from Anthony Guttmann, Nov 04 2021

A202062 Number of ascent sequences avoiding the pattern 201.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245, 435492, 2261769, 12033165, 65369590, 361661809, 2033429427, 11597912588, 67004252081, 391599609911, 2312726369640, 13789161819383, 82932744795049, 502777950712812, 3070529443569777, 18879637374473465, 116815588935673706, 727011479685559453
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493.
Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.

Formula

Guttmann and Kotesovec give asymptotics: a(n) ~ c * d^n / n^(9/2), where d = (14/3*cos(arccos(13/14)/3) + 8/3) = 7.2958969432397723745722241... is the root of the equation 1 + 5*d - 8*d^2 + d^3 = 0 and c = 35*sqrt((4107 - 84*sqrt(9289) * cos(Pi/3 + arccos(255709*sqrt(9289)/24653006)/3))/Pi)/16 = 13.4299960869439... - Vaclav Kotesovec, Sep 22 2021

Extensions

a(15) from Kanstancin Novikau, Mar 21 2017
a(16)-a(27) from Ildar Gainullin, Feb 11 2020

A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Comments

From Joerg Arndt, Jan 20 2024: (Start)
a(n) is the number of weak ascent sequences of length n.
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.
The number of length-n weak ascent sequences with maximal number of weak ascents is A000108(n).
(End)

Examples

			From _Joerg Arndt_, Jan 20 2024: (Start)
There are a(4) = 23 weak ascent sequences (dots for zeros):
   1:  [ . . . . ]
   2:  [ . . . 1 ]
   3:  [ . . . 2 ]
   4:  [ . . . 3 ]
   5:  [ . . 1 . ]
   6:  [ . . 1 1 ]
   7:  [ . . 1 2 ]
   8:  [ . . 1 3 ]
   9:  [ . . 2 . ]
  10:  [ . . 2 1 ]
  11:  [ . . 2 2 ]
  12:  [ . . 2 3 ]
  13:  [ . 1 . . ]
  14:  [ . 1 . 1 ]
  15:  [ . 1 . 2 ]
  16:  [ . 1 1 . ]
  17:  [ . 1 1 1 ]
  18:  [ . 1 1 2 ]
  19:  [ . 1 1 3 ]
  20:  [ . 1 2 . ]
  21:  [ . 1 2 1 ]
  22:  [ . 1 2 2 ]
  23:  [ . 1 2 3 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
        end:
    a:= n-> b(n, -1$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]];
    a[n_] := b[n, -1, -1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N,N,r,c,-1);  \\ memoization
    a(n,k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n,k] != -1 , return( M[n,k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) );
        M[n,k] = s;
        return( s );
    }
    for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); );
    \\ print triangle a(n,k), see A369321:
    \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print(););
    \\ Joerg Arndt, Jan 20 2024

Extensions

a(0)=1 prepended and more terms from Joerg Arndt, Jan 20 2024

A098569 Row sums of the triangle of triangular binomial coefficients given by A098568.

Original entry on oeis.org

1, 2, 5, 14, 43, 143, 510, 1936, 7775, 32869, 145665, 674338, 3251208, 16282580, 84512702, 453697993, 2514668492, 14367066833, 84489482201, 510760424832, 3170267071640, 20182121448815, 131642848217536, 878999194493046, 6003048930287115, 41899203336942661
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2004, Jun 29 2007

Keywords

Comments

From Lara Pudwell, Oct 23 2008: (Start)
A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.
Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.
A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.
For example, if q=5{bar 1}32{bar 4}, then q1=532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a.
(End)
Also equals the row sums of triangle A131338, which starts with a '1' in row 0 and then for n > 0 row n consists of n '1's followed by the partial sums of the prior row.
Also the number of permutations in S_n avoiding {bar 4}25{bar 1}3 (i.e., every occurrence of 253 is contained in an occurrence of a 42513). - Lara Pudwell, Apr 25 2008 (see the Claesson-Dukes-Kitaev article)
From Frank Ruskey, Apr 17 2011: (Start)
Number of sequences S = s(1)s(2)...s(n) such that
S contains m 0's,
for 1 <= j <= n, s(j) < j and s(j-s(j)) = 0,
for 1 < j <= n, if s(j) positive, then s(j-1) < s(j).
(End)
a(n) is also the number of length n permutations that simultaneously avoid the bivincular patterns (132,{2},{}) and (132,{},{2}). - Christian Bean, Mar 25 2015
a(n) is also the number of length n permutations that simultaneously avoid the bivincular patterns (123,{2},{}) and (123,{},{2}). These are the same as the permutations avoiding {bar 4}23{bar 1}5. - Christian Bean, Jun 03 2015
From Peter R. W. McNamara, Jun 22 2019: (Start)
a(n) is the number of upper-triangular matrices with nonnegative integer entries whose entries sum to n, and whose diagonal entries are all positive.
a(n) is the number of ascent sequences [d(1), d(2), ..., d(n)] A022493 for which d(k) comes from the interval [0, d(k-1)] or equals 1 + max([d(1), d(2), ..., d(k-1)]) = 1 + asc([d(1), d(2), ..., d(k-1)]) where asc(.) counts the ascents of its argument. Such sequences are called "self modified ascent sequences" in Bousquet-Mélou et al.
The elements of a (2+2)-free poset can be partitioned into levels, where all elements at the same level have the same strict down-set. Then a(n) is the number of unlabeled (2+2)-free posets with n elements that contain a chain with exactly one element at each level.
(End)

Examples

			In reference to comment about s(1)s(2)...s(n) above, a(3) = 14 = |{0000, 0001, 0002, 0003, 0010, 0020, 0100, 0012, 0013, 0023, 0101, 0103, 0120, 0123}|. - _Frank Ruskey_, Apr 17 2011
From _Paul D. Hanna_, Aug 24 2025: (Start)
The following array (A131338) illustrates a process that generates these numbers. Start with [1] in row n = 0. For n > 0, form row n by concatenating n 1's with the partial sums of the prior row. The row sums of row n equals a(n) for n >= 0; equivalently, the final term of row n+1 equals a(n). Continuing in this way generates all the terms of this sequence.
  n = 0; [1];
  n = 1: [1, 1];
  n = 2; [1, 1, 1, 2];
  n = 3: [1, 1, 1, 1, 2, 3, 5];
  n = 4: [1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14];
  n = 5: [1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43];
  n = 6: [1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143];
  n = 7: [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196, 267, 367, 510];
  ... (End)
		

Crossrefs

Programs

  • Maple
    A098569 := proc(n)
        add( binomial((k+1)*(k+2)/2+n-k-1,n-k),k=0..n) ;
    end proc:
    seq(A098569(n),n=0..40) ; # Georg Fischer, Oct 29 2023
  • Mathematica
    Table[Sum[Binomial[(k+1)*(k+2)/2+n-k-1, n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 05 2015 *)
  • PARI
    a(n)=sum(k=0,n,binomial((k+1)*(k+2)/2+n-k-1,n-k))

Formula

a(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
G.f: Sum_{k>=0} x^k*y^C(k+1,2) where y = 1/(1-x). - Christian Bean, Mar 25 2015
log(a(n)) ~ n*(log(n) - 2*log(log(n)) + log(2) - 1 + 4*log(log(n))/log(n) - 2*log(2)/log(n) - 2/log(n)^2). - Vaclav Kotesovec, Oct 30 2023

Extensions

Offset changed to 0 by Georg Fischer, Oct 29 2023
Previous Showing 11-20 of 43 results. Next