cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A131868 a(n) = (2*n^2)^(-1)*Sum_{d|n} (-1)^(n+d)*moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 35, 100, 300, 925, 2915, 9386, 30771, 102347, 344705, 1173960, 4037381, 14004912, 48954659, 172307930, 610269695, 2173656683, 7782070631, 27992709172, 101128485150, 366803656323, 1335349400274, 4877991428982
Offset: 1

Views

Author

Vladeta Jovovic, Oct 04 2007

Keywords

Comments

n*a(n) is the number of n-member subsets of {1,2,3,...,2*n-1} that sum to 1 mod n, cf. A145855. - Vladeta Jovovic, Oct 28 2008
a(n) is the number of orbits under the S_n action on a set closely related to the set of parking functions. See Konvalinka-Tewari reference below. - Vasu Tewari, Mar 17 2020

Crossrefs

Programs

  • Maple
    A131868 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do a := a+(-1)^(n+d)*numtheory[mobius](n/d)*binomial(2*d,d) ; od: a/2/n^2 ; end: seq(A131868(n),n=1..30) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    a = {}; For[n = 1, n < 30, n++, b = Divisors[n]; s = 0; For[j = 1, j < Length[b] + 1, j++, s = s + (-1)^(n + b[[j]])*MoebiusMu[n/b[[j]]]* Binomial[2*b[[j]], b[[j]]]]; AppendTo[a, s/(2*n^2)]]; a (* Stefan Steinerberger, Oct 26 2007 *)
    a[n_] := 1/(2n^2) DivisorSum[n, (-1)^(n+#) MoebiusMu[n/#] Binomial[2#, #]& ]; Array[a, 30] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    a(n) = (2*n^2)^(-1)*sumdiv(n, d, (-1)^(n+d)*moebius(n/d)*binomial(2*d,d)); \\ Michel Marcus, Dec 06 2018

Formula

a(n) ~ 2^(2*n - 1) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jun 08 2019

Extensions

More terms from R. J. Mathar and Stefan Steinerberger, Oct 24 2007

A268619 a(n) = (1/n^2) * Sum_{d|n} moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

2, 1, 2, 4, 10, 25, 70, 200, 600, 1845, 5830, 18772, 61542, 204659, 689410, 2347920, 8074762, 28009524, 97909318, 344615860, 1220539390, 4347310451, 15564141262, 55985418344, 202256970300, 733607281875, 2670698800548, 9755982857964, 35751803209918, 131405090455065, 484316704740126, 1789672012052256
Offset: 1

Views

Author

Max Alekseyev, Feb 09 2016

Keywords

Comments

6*a(n) is divisible by n (cf. A268592).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[2*#, #] &] / n^2; Array[a, 35] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    { a(n) = sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/n^2; }

Formula

a(n) = (1/n^2)* Sum_{d|n} A008683(n/d)*A000984(d).
a(n) = A007727(n)/n^2 = A045630(n)*2/n^2 = A060165(n)/n = A022553(n)*2/n.

A178904 This should be related to the Coxeter transformations of the posets of partitions in rectangular boxes of size m times n.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, -1, 2, -3, 2, -1, 0, 0, 1, -3, 4, 4, -3, 1, 0, 0, -1, 3, -6, 8, -6, 3, -1, 0, 0, 1, -3, 9, -13, -13, 9, -3, 1, 0, 0, -1, 4, -11, 19, -23, 19, -11, 4, -1, 0, 0, 1, -5, 13, -27, 39, 39, -27, 13, -5, 1, 0, 0, -1, 5, -17, 38, -61, 71, -61, 38, -17, 5, -1, 0
Offset: 0

Views

Author

F. Chapoton, Jun 22 2010

Keywords

Comments

This table is symmetric: a(m,n)=a(n,m) for all m,n>=0.

Examples

			a(0,0) = 1, a(1,0) = a(0,1) = -1.
Triangle begins:
   1;
  -1, -1;
   0, -1,  0;
   0,  1,  1,  0;
   0, -1,  1, -1,  0;
   0,  1, -1, -1,  1,  0;
   0, -1,  2, -3,  2, -1, 0;
   ...
		

Crossrefs

Programs

  • Mathematica
    b[m_, n_] := (-1)^Max[m, n]*Binomial[m+n, n]; A[m_, n_] := DivisorSum[ n+m+1, b[Floor[m/#], Floor[n/#]]*MoebiusMu[#]&]/(m+n+1); Table[A[m-n, n], {m, 0, 12}, {n, 0, m}] // Flatten (* Jean-François Alcover, Feb 23 2017, adapted from Python *)
  • Sage
    def twisted_binomial(m, n):
        return (-1)**max(m, n) * binomial(m + n, n)
    def coefficients_A(m, n):
        return sum(twisted_binomial(m // d, n // d) * moebius(d)
               for d in divisors(m + n + 1)) / (m + n + 1)
    matrix(ZZ, 8, 8, coefficients_A)

Extensions

Terms a(82) onward added by G. C. Greubel, Dec 10 2017

A346577 a(n) = (1/(3*n)) * Sum_{d|n} mu(n/d) * binomial(3*d,d).

Original entry on oeis.org

1, 2, 9, 40, 200, 1026, 5537, 30624, 173583, 1001400, 5864749, 34768296, 208267319, 1258574114, 7663720500, 46976003712, 289628805622, 1794932293950, 11175157356521, 69864074596000, 438403736543598, 2760351027094298, 17433869214973753, 110420300844952992
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A001764.
Moebius transform of A082936.

Crossrefs

Programs

  • Mathematica
    Table[(1/(3 n)) Sum[MoebiusMu[n/d] Binomial[3 d, d], {d, Divisors[n]}], {n, 24}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d,d))/(3*n); \\ Michel Marcus, Jul 24 2021

Formula

a(n) = A060170(n)/3. - Hugo Pfoertner, Jul 24 2021

A346578 a(n) = (1/(4*n)) * Sum_{d|n} mu(n/d) * binomial(4*d,d).

Original entry on oeis.org

1, 3, 18, 112, 775, 5598, 42287, 328640, 2615085, 21191125, 174303162, 1451424960, 12211799223, 103655906781, 886568152950, 7633233227520, 66105170315083, 575445689879247, 5032380942945321, 44191451767056400, 389514699012969936, 3444925385161998518, 30561576846316109863
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002293.
Moebius transform of A261497.

Crossrefs

Programs

  • Mathematica
    Table[(1/(4 n)) Sum[MoebiusMu[n/d] Binomial[4 d, d], {d, Divisors[n]}], {n, 23}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(4*d,d))/(4*n); \\ Michel Marcus, Jul 24 2021

A346579 a(n) = (1/(5*n)) * Sum_{d|n} mu(n/d) * binomial(5*d,d).

Original entry on oeis.org

1, 4, 30, 240, 2125, 19776, 192129, 1922496, 19692504, 205444500, 2175519379, 23322637440, 252631900235, 2760767859780, 30400169155500, 336977763170048, 3757141504436392, 42107201575798248, 474084628585822412, 5359833703935374000, 60823006052351537106, 692556314455384443196
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002294.
Moebius transform of A261498.

Crossrefs

Programs

  • Mathematica
    Table[(1/(5 n)) Sum[MoebiusMu[n/d] Binomial[5 d, d], {d, Divisors[n]}], {n, 22}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(5*d,d))/(5*n); \\ Michel Marcus, Jul 24 2021

A346580 a(n) = (1/(6*n)) * Sum_{d|n} mu(n/d) * binomial(6*d,d).

Original entry on oeis.org

1, 5, 45, 440, 4750, 54081, 642341, 7861216, 98480286, 1256564750, 16273981757, 213378921432, 2826867619108, 37782552518473, 508840821825750, 6898459208449920, 94070535317459017, 1289430373107917718, 17755914760643605781, 245518560759177014000, 3407586451859019939012
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002295.
Moebius transform of A261499.

Crossrefs

Programs

  • Mathematica
    Table[(1/(6 n)) Sum[MoebiusMu[n/d] Binomial[6 d, d], {d, Divisors[n]}], {n, 21}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(6*d,d))/(6*n); \\ Michel Marcus, Jul 24 2021

A346581 a(n) = (1/(7*n)) * Sum_{d|n} mu(n/d) * binomial(7*d,d).

Original entry on oeis.org

1, 6, 63, 728, 9275, 124866, 1753073, 25365600, 375677595, 5667202850, 86775157139, 1345153422600, 21069043965983, 332927798516614, 5301031234076325, 84967018610221440, 1369846562874360886, 22199151535757655354, 361411377745122110421, 5908312923789590118600
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002296.
Moebius transform of A261500.

Crossrefs

Programs

  • Mathematica
    Table[(1/(7 n)) Sum[MoebiusMu[n/d] Binomial[7 d, d], {d, Divisors[n]}], {n, 20}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(7*d,d))/(7*n); \\ Michel Marcus, Jul 24 2021

A346582 a(n) = (1/(8*n)) * Sum_{d|n} mu(n/d) * binomial(8*d,d).

Original entry on oeis.org

1, 7, 84, 1120, 16450, 255612, 4141382, 69158272, 1182125043, 20581143150, 363704640475, 6506965023168, 117626432708863, 2145180354493274, 39421026305266125, 729242353100281344, 13568988503585900647, 253785064585174078869, 4768543107831461199896, 89970814565326816488000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A007556.
Moebius transform of A261501.

Crossrefs

Programs

  • Mathematica
    Table[(1/(8 n)) Sum[MoebiusMu[n/d] Binomial[8 d, d], {d, Divisors[n]}], {n, 20}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(8*d,d))/(8*n); \\ Michel Marcus, Jul 24 2021

A005354 Number of asymmetric planar trees with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0

Views

Author

Keywords

Comments

a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 03 2010: (Start)
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
    A022553 := proc(n) A007727(n)/2/n ; end proc:
    A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
  • Mathematica
    a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)

Formula

From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

Extensions

More terms from Christian G. Bower, Dec 15 1999
Previous Showing 11-20 of 35 results. Next