cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 126 results. Next

A337069 Number of strict factorizations of the superprimorial A006939(n).

Original entry on oeis.org

1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n.

Examples

			The a(3) = 34 factorizations:
  2*3*4*15  2*3*60   2*180  360
  2*3*5*12  2*4*45   3*120
  2*3*6*10  2*5*36   4*90
  2*4*5*9   2*6*30   5*72
  3*4*5*6   2*9*20   6*60
            2*10*18  8*45
            2*12*15  9*40
            3*4*30   10*36
            3*5*24   12*30
            3*6*20   15*24
            3*8*15   18*20
            3*10*12
            4*5*18
            4*6*15
            4*9*10
            5*6*12
            5*8*9
		

Crossrefs

A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.
A322583 counts factorizations into factorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[stfa[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318286 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A045778(A006939(n)).
a(n) = A318286(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A023854 Sum of exponents in prime-power factorization of binomial(6n, 3n).

Original entry on oeis.org

0, 3, 5, 6, 7, 11, 11, 12, 13, 14, 15, 16, 15, 19, 20, 21, 22, 23, 23, 22, 25, 29, 25, 29, 28, 31, 32, 30, 31, 34, 34, 35, 35, 36, 36, 38, 38, 41, 41, 41, 40, 46, 44, 43, 44, 44, 46, 47, 46, 47, 50, 51, 49, 53, 49, 52, 53, 53, 56, 55, 56, 60, 60, 61, 57, 61, 61, 61, 65, 66, 63, 67, 66, 69, 69, 66, 69, 71, 70, 72, 72
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Total[Transpose[FactorInteger[Binomial[6 #, 3 #]]][[2]]]&/@Range[80]] (* Harvey P. Dale, May 14 2011 *)
    a[n_] := PrimeOmega[Binomial[6*n, 3*n]]; Array[a, 100, 0] (* Amiram Eldar, Jun 11 2025 *)
  • PARI
    a(n) = bigomega(binomial(6*n, 3*n)); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A001222(A066802(n)).
a(n) = A022559(6*n) - 2*A022559(3*n). (End)

Extensions

Corrected and extended by Harvey P. Dale, May 14 2011
a(0)=0 inserted by Amiram Eldar, Jun 11 2025

A081399 Bigomega of the n-th Catalan number: a(n) = A001222(A000108(n)).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 3, 4, 4, 5, 5, 6, 7, 9, 7, 8, 8, 10, 9, 10, 10, 11, 11, 11, 12, 12, 11, 13, 13, 14, 11, 13, 14, 14, 13, 14, 14, 16, 15, 16, 18, 19, 19, 19, 19, 21, 19, 20, 19, 21, 20, 21, 21, 21, 19, 20, 20, 22, 22, 24, 25, 25, 23, 23, 23, 24, 24, 27, 26, 27, 25, 27, 28, 29, 28
Offset: 0

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Comments

It is easy to show that a(n) is between n/log(n) and 2n/log(n) (for n>n0), cf. [Campbell 1984]. The sequence A137687, roughly the middle of this interval, is a fair approximation for A081399. See A137686 for the (signed) difference of the two sequences.

Crossrefs

Programs

  • Maple
    with(numtheory):a:=proc(n) if n=0 then 0 else bigomega(binomial(2*n,n)/(1+n)) fi end: seq(a(n), n=0..75); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    a[n_] := PrimeOmega[ CatalanNumber[n]]; Table[a[n], {n, 0, 75}] (* Jean-François Alcover, Jul 02 2013 *)
  • PARI
    A081399(n)=bigomega(prod(i=2,n,(n+i)/i)) \\ M. F. Hasler, Feb 06 2008

Formula

a(n)=A001222[A000108(n)]

Extensions

Edited and extended by M. F. Hasler, Feb 06 2008

A112967 Sum(Omega(i)*Omega(j): i+j=n), with Omega=A001222.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 10, 10, 17, 18, 26, 24, 33, 30, 41, 38, 52, 46, 64, 54, 71, 62, 87, 70, 91, 80, 106, 90, 116, 100, 130, 112, 139, 120, 163, 130, 161, 144, 185, 152, 190, 162, 208, 172, 205, 178, 244, 186, 232, 208, 262, 212, 267, 218, 291, 246, 287, 248, 329, 252
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Crossrefs

Programs

  • Maple
    X:= Vector(100, numtheory:-bigomega):
    seq(add(X[i]*X[n-i],i=1..n-1),n=1..100); # Robert Israel, Mar 15 2017
  • Mathematica
    Table[Sum[PrimeOmega[i] PrimeOmega[n - i],{i,1, n - 1} ], {n, 1, 61}] (* Indranil Ghosh, Mar 16 2017 *)
  • PARI
    for(n=1, 61, print1(sum(i=1, n - 1, bigomega(i) * bigomega(n - i)),", ")) \\ Indranil Ghosh, Mar 16 2017

Formula

G.f.: (Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)))^2. - Ilya Gutkovskiy, Mar 15 2017

A303281 Expansion of (x/(1 - x)) * (d/dx) Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).

Original entry on oeis.org

0, 2, 5, 13, 18, 30, 37, 61, 79, 99, 110, 146, 159, 187, 217, 281, 298, 352, 371, 431, 473, 517, 540, 636, 686, 738, 819, 903, 932, 1022, 1053, 1213, 1279, 1347, 1417, 1561, 1598, 1674, 1752, 1912, 1953, 2079, 2122, 2254, 2389, 2481, 2528, 2768, 2866, 3016, 3118, 3274, 3327, 3543, 3653
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Comments

Sum of exponents in prime-power factorization of hyperfactorial: Product_{k=1..n} k^k (A002109).
Partial sums of A066959.

Examples

			a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
    Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
    Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
    Accumulate[Table[k * PrimeOmega[k], {k, 1, 55}]] (* Amiram Eldar, Jun 13 2025 *)
  • PARI
    a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Crossrefs

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  0
  1  2  1  2  1
  1  3  1  3  2  0
  1  3  2  5  3  3  2  1
  1  4  2  7  4  4  3  2  0
  1  4  2  7  4  5  7  7  6  3  2  0
  1  4  2  8  8  9 10 11 11  7  8  5  2  0
  1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
  1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
  1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
Row n = 7 counts the following divisors:
  1  2  4  8   16  48   144  720   {}
     3  9  12  24  72   360  1008
     5     18  40  80   504
     7     20  56  112
           28
           45
           63
		

Crossrefs

A000720 is column k = 1.
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336414 gives row sums.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]

A336618 Maximum divisor of n! with equal prime multiplicities.

Original entry on oeis.org

1, 1, 2, 6, 8, 30, 36, 210, 210, 1296, 1296, 2310, 7776, 30030, 44100, 46656, 46656, 510510, 1679616, 9699690, 9699690, 10077696, 10077696, 223092870, 223092870, 729000000, 901800900, 13060694016, 13060694016, 13060694016, 78364164096, 200560490130
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2020

Keywords

Comments

A number has equal prime multiplicities iff it is a power of a squarefree number. We call such numbers uniform, so a(n) is the maximum uniform divisor of n!.

Examples

			The sequence of terms together with their prime signatures begins:
       1: ()
       1: ()
       2: (1)
       6: (1,1)
       8: (3)
      30: (1,1,1)
      36: (2,2)
     210: (1,1,1,1)
     210: (1,1,1,1)
    1296: (4,4)
    1296: (4,4)
    2310: (1,1,1,1,1)
    7776: (5,5)
   30030: (1,1,1,1,1,1)
   44100: (2,2,2,2)
		

Crossrefs

A327526 is the non-factorial generalization, with quotient A327528.
A336415 counts these divisors.
A336616 is the version for distinct prime multiplicities.
A336619 is the quotient n!/a(n).
A047966 counts uniform partitions.
A071625 counts distinct prime multiplicities.
A072774 lists uniform numbers.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A319269 counts uniform factorizations.
A327524 counts factorizations of uniform numbers into uniform numbers.
A327527 counts uniform divisors.

Programs

  • Mathematica
    Table[Max@@Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&],{n,0,15}]

Formula

a(n) = A327526(n!).
Previous Showing 61-70 of 126 results. Next