cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A258797 a(n) = [x^n] Product_{k=1..n} (1+x^k)^2 / x^k.

Original entry on oeis.org

1, 1, 2, 6, 16, 51, 166, 554, 1896, 6595, 23212, 82582, 296393, 1071738, 3900696, 14278074, 52526972, 194108087, 720197524, 2681854490, 10019539112, 37545876368, 141080872362, 531457445806, 2006678785762, 7593123695669, 28789152013570, 109356019134584
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Comments

a(n) is half the number of subsets of {-n..n} whose sum is n. - Ilya Gutkovskiy, Jul 09 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n*(n+1)/2 b(n$2):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 14 2025
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^2/x^k, {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[Product[1+x^k, {k, 1, n}]^2, {x, 0, n*(n+3)/2}], {n, 0, 30}]

Formula

a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)).

A280245 Expansion of Product_{k>=1} (1 + x^prime(k))^2.

Original entry on oeis.org

1, 0, 2, 2, 1, 6, 1, 8, 6, 6, 14, 6, 18, 14, 18, 24, 23, 30, 35, 38, 46, 54, 55, 74, 72, 90, 100, 106, 128, 136, 152, 178, 185, 216, 238, 252, 302, 308, 359, 390, 420, 478, 512, 564, 628, 668, 745, 810, 871, 974, 1035, 1140, 1238, 1336, 1459, 1586, 1700, 1868, 1993, 2168, 2354, 2512, 2751, 2930, 3177, 3418, 3677, 3960
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2016

Keywords

Comments

Number of partitions of n into distinct prime parts, with 2 types of each part.
Self-convolution of A000586. - Ilya Gutkovskiy, Jan 19 2018

Examples

			a(5) = 6 because we have [5], [5'], [3, 2], [3', 2], [3, 2'], [3', 2'].
		

Crossrefs

Programs

  • Mathematica
    nmax = 67; CoefficientList[Series[Product[(1 + x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^prime(k))^2.
log(a(n)) ~ 2*Pi*sqrt(n/(3*log(n/2))). - Vaclav Kotesovec, Jan 12 2021

A293377 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 7, 6, 0, 1, 2, 7, 10, 9, 0, 1, 2, 7, 16, 25, 14, 0, 1, 2, 7, 16, 31, 38, 22, 0, 1, 2, 7, 16, 39, 62, 78, 32, 0, 1, 2, 7, 16, 39, 70, 117, 116, 46, 0, 1, 2, 7, 16, 39, 80, 149, 206, 206, 66, 0, 1, 2, 7, 16, 39, 80, 159, 262, 362
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0,  2,  2,  2,  2, ...
   0,  3,  7,  7,  7, ...
   0,  6, 10, 16, 16, ...
   0,  9, 25, 31, 39, ...
   0, 14, 38, 62, 70, ...
		

Crossrefs

Columns k=0..1 give A000007, A022567.
Rows n=0 gives A000012.
Main diagonal gives A293378.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: A290217 (m=-1), A290216 (m=1), this sequence (m=2).

A304443 Coefficient of x^n in Product_{k>=1} (1+x^k)^(2*n).

Original entry on oeis.org

1, 2, 10, 62, 394, 2562, 16966, 113794, 770442, 5254334, 36042250, 248403586, 1718732998, 11931569028, 83064794746, 579696375972, 4054279504266, 28408328186508, 199390547044342, 1401564307833908, 9865190079554954, 69522550703432476, 490484539061916794
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[(1+x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 25; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(2*n), {x, 0, n}], {n, 0, nmax}]
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[Derivative[0, 1][QPochhammer][-1, r*s] / (Pi*r*(Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s]^2 + 2*s*Derivative[0, 2][QPochhammer][-1, r*s]))]} /. FindRoot[{4*s == QPochhammer[-1, r*s]^2, 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.21883059750200610514730564495768943165197819880185778427663522275469... and c = 0.300860732623379969554285615234449502629772950943717460278989499...

A327214 Self-convolution of A270913.

Original entry on oeis.org

1, 2, 7, 32, 137, 592, 2597, 11442, 50567, 224112, 995392, 4428372, 19727877, 87983202, 392755207, 1754625632, 7844003907, 35086658052, 157023432677, 703037135122, 3148915010832, 14108913792342, 63235380631747, 283495965998772, 1271282293531077, 5702105357347602
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A270913[n_]:=SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A270913[k]*A270913[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c^2 * Pi * d^n, where d = A270914 = 4.5024767476173544877385939327... and c = A327280 = 0.260542233142438469433860832160... (see A270913).

A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 3, 19, 101, 501, 2486, 12398, 62329, 315436, 1605330, 8207552, 42124368, 216903051, 1119974861, 5796944342, 30068145889, 156250892593, 813310723907, 4239676354631, 22130265931880, 115654632452514, 605081974091853, 3168828466966365, 16610409114771876, 87141919856550506
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Number of partitions of n into 2 or more parts of n kinds. - Ilya Gutkovskiy, May 16 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - Vaclav Kotesovec, May 16 2018

A307756 Exponential convolution of number of partitions into distinct parts (A000009) with themselves.

Original entry on oeis.org

1, 2, 4, 10, 26, 66, 184, 472, 1268, 3340, 8748, 22772, 59102, 151590, 386830, 983914, 2489384, 6263284, 15703204, 39221884, 97498736, 241538472, 596115898, 1465958522, 3595196600, 8788765304, 21421616934, 52080152238, 126268822824, 305365334180, 736770528064
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> add(binomial(n, j)*b(j)*b(n-j), j=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 26 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] PartitionsQ[k] PartitionsQ[n - k], {k, 0, n}], {n, 0, 30}]

Formula

E.g.f.: (Sum_{k>=0} A000009(k)*x^k/k!)^2.
a(n) = Sum_{k=0..n} binomial(n,k)*A000009(k)*A000009(n-k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * 2^(n - 5/2) / (sqrt(3) * n^(3/2)). - Vaclav Kotesovec, May 06 2019

A316142 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x)-1)^k)^2.

Original entry on oeis.org

1, 2, 8, 56, 476, 4832, 58508, 815936, 12750956, 220610432, 4195325708, 86976996416, 1949966347436, 46965887762432, 1208922621624908, 33111231803362496, 961354836530983916, 29490401681798152832, 952900154176192244108, 32342850619899263226176
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 25 2018

Keywords

Comments

Self-convolution of A305550.
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 7 we obtain the sequence [1, 2, 1, 0, 0, 2, 2, 2, 1, 0, 0, 2, 2, 2, 1, 0, 0, 2, 2, ...], with a preperiod of length 1 and an apparent period thereafter of 6 = phi(7). - Peter Bala, Mar 03 2023

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

Sum_{k=0..n} binomial(n,k) * A305550(k) * A305550(n-k).
a(n) ~ n! * exp(Pi * sqrt(n/(3*log(2))) - Pi^2 * (1 - 1/log(2)) / 24) / (2^(5/2) * 3^(1/4) * (log(2))^(n + 1/4) * n^(3/4)).

A229707 Triangular array read by rows. T(n,k) is the number of strictly unimodal compositions of n with the greatest part equal to k; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 0, 3, 2, 1, 0, 0, 4, 3, 2, 1, 0, 0, 3, 6, 3, 2, 1, 0, 0, 2, 7, 6, 3, 2, 1, 0, 0, 1, 8, 9, 6, 3, 2, 1, 0, 0, 0, 10, 12, 9, 6, 3, 2, 1, 0, 0, 0, 8, 16, 14, 9, 6, 3, 2, 1, 0, 0, 0, 7, 20, 20, 14, 9, 6, 3, 2, 1
Offset: 1

Views

Author

Geoffrey Critzer, Sep 27 2013

Keywords

Comments

A strictly unimodal composition is a composition such that for some j,m 1 <= x(1) < x(2) < ... < x(j) > x(j+1) > ... > x(m) >= 1.
Row sums are A059618.
Sum of column k is A000302(k-1).
T(2*n+1,n+1) = A022567(n) for n>=0. - Alois P. Heinz, Oct 11 2013

Examples

			1,
0, 1,
0, 2, 1,
0, 1, 2, 1,
0, 0, 3, 2, 1,
0, 0, 4, 3, 2, 1,
0, 0, 3, 6, 3, 2, 1,
0, 0, 2, 7, 6, 3, 2, 1,
0, 0, 1, 8, 9, 6, 3, 2, 1,
0, 0, 0, 10, 12, 9, 6, 3, 2, 1
T(7,3) = 3 because we have: 1+2+3+1 = 1+3+2+1 = 2+3+2.
		

Crossrefs

Cf. A229706.

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
          `if`(k>0, `if`(n b(n, 0, k):
    seq(seq(T(n, k), k=1..n), n=1..16);  # Alois P. Heinz, Oct 07 2013
  • Mathematica
    nn=10;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1,0]&,Table[CoefficientList[Series[x^n Product[(1+x^i),{i,1,n-1}]^2,{x,0,nn}],x],{n,1,nn}]]],1][[n]],n],{n,1,nn}]//Grid

Formula

O.g.f. for column k: x^k * prod(i=1..k-1, 1 + x^i)^2.

A292445 Expansion of a q-series used by Ramanujan in his Lost Notebook.

Original entry on oeis.org

1, 4, 10, 22, 44, 82, 145, 248, 410, 658, 1036, 1598, 2420, 3614, 5322, 7738, 11132, 15850, 22353, 31260, 43366, 59708, 81650, 110932, 149788, 201112, 268562, 356790, 471732, 620834, 813480, 1061496, 1379626, 1786282, 2304440, 2962566, 3795921, 4848160
Offset: 0

Views

Author

Michael Somos, Sep 16 2017

Keywords

Comments

Similar to A292420 but with a=1.

Examples

			G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 44*x^4 + 82*x^5 + 145*x^6 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=1.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 / QPochhammer[ x]^2 Sum[ x^k / Product[ 1 - x^(2 i + 1), {i, 0, k}], {k, 0, n}], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2 * sum(k=0, n, x^k / prod(i=0, k, 1 - x^(2*i+1), 1 + A/x^k)), n))};

Formula

a(n) = 2 * A256209(n) - A279715(n).
G.f. is the product of the g.f. of A022567 and A053253.
Previous Showing 21-30 of 38 results. Next