cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 75 results. Next

A292189 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 13, 7, 3, 1, 1, 16, 35, 25, 15, 4, 1, 1, 32, 97, 91, 77, 25, 5, 1, 1, 64, 275, 337, 405, 161, 43, 6, 1, 1, 128, 793, 1267, 2177, 1069, 393, 64, 8, 1, 1, 256, 2315, 4825, 11925, 7313, 3799, 726, 120, 10
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2017

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,   1, ...
   1, 1,  1,  1,   1, ...
   1, 2,  4,  8,  16, ...
   2, 5, 13, 35,  97, ...
   2, 7, 25, 91, 337, ...
		

Crossrefs

Columns k=0..5 give A000009, A022629, A092484, A265840, A265841, A265842.
Rows 0+1, 2, 3 give A000012, A000079, A007689.
Main diagonal gives A292190.
Cf. A292166.

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    m = 14;
    col[k_] := col[k] = Product[1 + j^k*x^j, {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&;
    A[n_, k_] := col[k][[n+1]];
    Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022

A266971 Expansion of Product_{k>=1} 1 / (1 + k*x^k)^k.

Original entry on oeis.org

1, -1, -3, -6, 2, 9, 41, 46, 91, -110, -210, -713, -574, -1152, 792, 1066, 9317, 8553, 21302, 745, 8051, -82940, -76750, -276022, -82369, -404100, 381095, -38110, 2427272, 1126260, 6527840, 198507, 9754305, -14320206, 2879362, -60271740, -5154261, -143468194
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Comments

For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266971(n)
      A((0..n).to_a, (0..n).map{|i| -i}, n)
    end
    p A266971(50) # Seiichi Manyama, Nov 18 2017

Formula

a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where
c = 50.5838262902886367070621... if mod(n,3)=0,
c = 50.5827771239052189170531... if mod(n,3)=1,
c = 50.5832885870455104598393... if mod(n,3)=2.
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017

A267004 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - x^k)).

Original entry on oeis.org

1, 2, 5, 12, 24, 50, 97, 184, 331, 606, 1061, 1834, 3125, 5228, 8673, 14250, 23034, 36894, 58750, 92298, 144398, 223994, 344916, 527116, 801295, 1209870, 1816539, 2713956, 4033169, 5961700, 8775236, 12852444, 18742153, 27225316, 39371647, 56743200, 81467211
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Comments

Convolution of A022629 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A015716 Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, one of which is k (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 1, 1, 1, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 8, 7, 6, 6, 4, 4, 4, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums yield A015723. T(n,1)=A025147(n-1); T(n,2)=A015744(n-2); T(n,3)=A015745(n-3); T(n,4)=A015746(n-4); T(n,5)=A015750(n-5). - Emeric Deutsch, Mar 29 2006
Number of parts of size k in all partitions of n into distinct parts. Number of partitions of n-k into distinct parts not including a part of size k. - Franklin T. Adams-Watters, Jan 24 2012

Examples

			T(8,3)=2 because we have [5,3] and [4,3,1].
Triangle begins:
n/k 1 2 3 4 5 6 7 8 9 10
01: 1
02: 0 1
03: 1 1 1
04: 1 0 1 1
05: 1 1 1 1 1
06: 2 2 1 1 1 1
07: 2 2 1 2 1 1 1
08: 3 2 2 1 2 1 1 1
09: 3 3 3 2 2 2 1 1 1
10: 5 4 4 3 2 2 2 1 1 1
...
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), which is row n = 6. - _Gus Wiseman_, May 07 2019
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j,j=1..50)*sum(t^i*x^i/(1+x^i),i=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 29 2006
    seq(seq(coeff(x^k*(product(1+x^j, j=1..n))/(1+x^k), x, n), k=1..n), n=1..13); # Mircea Merca, Feb 28 2014
  • Mathematica
    z = 15; d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; p[n_, k_] := p[n, k] = d[n][[k]]; s[n_] := s[n] = Flatten[Table[p[n, k], {k, 1, PartitionsQ[n]}]]; t[n_, k_] := Count[s[n], k]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]; TableForm[u] (* A015716 as a triangle *)
    v = Flatten[u] (* A015716 as a sequence *)
    (* Clark Kimberling, Mar 14 2014 *)

Formula

G.f.: G(t,x) = Product_{j>=1} (1+x^j) * Sum_{i>=1} t^i*x^i/(1+x^i). - Emeric Deutsch, Mar 29 2006
From Mircea Merca, Feb 28 2014: (Start)
a(n) = A238450(n) + A238451(n).
T(n,k) = Sum_{j=1..floor(n/k)} (-1)^(j-1)*A000009(n-j*k).
G.f.: for column k: q^k/(1+q^k)*(-q;q)_{inf}. (End)

A265840 Expansion of Product_{k>=1} (1 + k^3*x^k).

Original entry on oeis.org

1, 1, 8, 35, 91, 405, 1069, 3799, 8686, 36744, 86310, 235776, 686329, 1605779, 5230579, 13191702, 30608501, 73907925, 206052723, 433747560, 1324608945, 2995740974, 6973434054, 15364943439, 35816669079, 86662644756, 184871083828, 502089539734, 1098571699830
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=3 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^3*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(3*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ 3*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265841 Expansion of Product_{k>=1} (1 + k^4*x^k).

Original entry on oeis.org

1, 1, 16, 97, 337, 2177, 7313, 38529, 108594, 717186, 2053522, 7527458, 30757155, 88042387, 448973459, 1390503396, 4087546309, 12699966117, 49599776261, 124699632310, 608410782855, 1651128186296, 4862631132392, 13170300313769, 39285370060347, 130999461143020
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=4 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^4*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(4*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ 4*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A265842 Expansion of Product_{k>=1} (1 + k^5*x^k).

Original entry on oeis.org

1, 1, 32, 275, 1267, 11925, 51445, 406183, 1406614, 14690040, 51144366, 251885088, 1481359033, 5108404955, 42614629915, 158222158038, 588574803125, 2360755022421, 13255325882835, 39266011999104, 325719196861377, 1031732678138822, 3791401325667894
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Column k=5 of A292189.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + k^5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(5*k)*x^(j*k)/k). - Ilya Gutkovskiy, Oct 18 2018
Conjecture: log(a(n)) ~ 5*sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

A268500 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 0, 1, 2, 2, 6, 7, 14, 11, 42, 39, 70, 95, 142, 239, 378, 418, 624, 1106, 1200, 2250, 2836, 4166, 4902, 8021, 10410, 14961, 21268, 29477, 36714, 54172, 68358, 95071, 134946, 168035, 254190, 322335, 427338, 541054, 787264, 964969, 1340730, 1748094, 2311386
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A318416 Expansion of Product_{i>=1, j>=1} (1 + i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 4, 10, 22, 50, 115, 231, 470, 995, 1912, 3745, 7222, 13608, 25345, 47322, 85654, 155163, 278867, 494080, 870618, 1524769, 2640527, 4549564, 7802037, 13251684, 22412317, 37706268, 63015263, 104800015, 173574936, 285694401, 468449681, 764775169, 1242535747, 2010866469, 3242127656
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(1+i*j*x^(i*j),j=1..55),i=1..55),x=0,37): seq(coeff(a,x,n),n=0..36); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 36; CoefficientList[Series[Product[Product[(1 + i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Product[(1 + k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Exp[Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 36}]
    nmax = 36; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(k/d+1)*tau(d) ) * x^k/k).
Previous Showing 21-30 of 75 results. Next