cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 154 results. Next

A049491 Numbers k such that k and k+128 are both prime.

Original entry on oeis.org

3, 11, 23, 29, 53, 71, 83, 101, 113, 149, 179, 239, 251, 269, 281, 293, 311, 359, 419, 443, 449, 479, 491, 503, 563, 599, 641, 659, 683, 701, 809, 839, 863, 881, 911, 941, 1103, 1109, 1151, 1163, 1193, 1301, 1319, 1361, 1439, 1451, 1481, 1493, 1499, 1571
Offset: 1

Views

Author

Keywords

Examples

			11 and 11+128 = 139 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(n+128)]; // Vincenzo Librandi, Feb 02 2014
  • Mathematica
    Select[Prime[Range[300]],PrimeQ[#+128]&] (* Harvey P. Dale, Jan 16 2011 *)

A054902 Composite numbers n such that sigma(n)+12 = sigma(n+12).

Original entry on oeis.org

65, 170, 209, 1394, 3393, 4407, 4556, 11009, 13736, 27674, 38009, 38845, 47402, 76994, 157994, 162393, 184740, 186686, 209294, 680609, 825359, 954521, 1243574, 2205209, 3515609, 4347209, 5968502, 6539102, 6916241, 8165294, 10352294, 10595009, 10786814
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Examples

			n = 65, sigma(65)+12 = 84+12 = 96 = sigma(65+12) = sigma(77).
n = 11009, sigma(11009)+12 = 11220+12 = 11232 = sigma(11009+12) = sigma(11021).
		

Crossrefs

Complement of A046133 with respect to A015917.

Programs

  • PARI
    isok(n) = !isprime(n) && ((sigma(n)+12) == sigma(n+12)); \\ Michel Marcus, Dec 18 2013

Extensions

More terms from Jud McCranie, May 24 2000
Three more terms from Michel Marcus, Dec 18 2013

A054904 x = a(n) is the smallest composite number such that sigma(x+6n) = sigma(x)+6n, where sigma = A000203.

Original entry on oeis.org

104, 65, 20, 80, 44, 125, 45, 63, 40, 99, 56, 70, 296, 125, 88, 110, 104, 145, 212, 182, 80, 170, 333, 105, 369, 185, 184, 135, 180, 301, 356, 185, 1859, 329, 176, 195, 4916, 434, 612, 287, 140, 185, 776, 255, 524, 413, 344, 205, 272, 329, 567, 215, 320, 469
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

If sigma(x+d) = sigma(x)+d and d = 6k, then composite solutions seem to be more frequent and arise sooner.
a(725) > 3*10^11 (if it exists). - Donovan Johnson, Sep 23 2013

Examples

			n = 20, 6n = 120, a(20) = 182, sigma(182)+120 = 336+120 = 456 = sigma(182+120) = sigma(302).
		

Crossrefs

Programs

  • Mathematica
    Table[x = 4; While[Nand[CompositeQ@ x, DivisorSigma[1, x + 6 n] == DivisorSigma[1, x] + 6 n], x++]; x, {n, 54}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    /* finds first 696 terms */ mx=7695851; s=vector(mx); for(j=4, mx, if(isprime(j)==0, s[j]=sigma(j))); for(n=1, 696, n6=n*6; for(x=4, 7691753, if(s[x]>0, if(s[x+n6]==s[x]+n6, write("b054904.txt", n " " x); next(2))))) /* Donovan Johnson, Sep 23 2013 */

Formula

sigma(x+6n) = sigma(x)+6n, a(n) = min(x) and it is composite.

A067775 Primes p such that p + 4 is composite.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 89, 101, 107, 113, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 227, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 311, 317, 331, 337, 347, 353, 359, 367, 373, 383, 389
Offset: 1

Views

Author

Benoit Cloitre, Feb 06 2002

Keywords

Comments

Primes n such that n!*B(n+3) is an integer where B(k) are the Bernoulli numbers B(1) = -1/2, B(2) = 1/6, B(4) = -1/30, ..., B(2m+1) = 0 for m > 1.
If n is prime n!*B(n-1) is always an integer. Note that if Goldbach's conjecture (2n = p1 + p2 for all n >= 2) is false and K is the smallest value of n for which it fails, then for 2(K-2) = p3 + p4, the primes p3 and p4 must be taken from this list. See similar comment for A140555. - Keith Backman, Apr 06 2012
Complement of A023200 (primes p such that p + 4 is also prime) with respect to A000040 (primes). For p > 2: primes p such that there is no prime of the form r^2 + p where r is prime, subsequence of A232010. Example: the prime 7 is not in the sequence because 2^2 + 7 = 11 (prime). A232009(a(n)) = 0 for n > 1 . - Jaroslav Krizek, Nov 22 2013

Crossrefs

Programs

  • Mathematica
    A067775 = {}; Do[p = Prime@ n; If[ IntegerQ[ p! BernoulliB[p + 3]], AppendTo[A067775, p]], {n, 77}]; A067775 (* Robert G. Wilson v, Aug 19 2008 *)
    Select[Prime[Range[80]], Not[PrimeQ[# + 4]] &] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    lista(nn) = {forprime(p=1, nn, if (! isprime(p+4), print1(p, ", ")););} \\ Michel Marcus, Nov 22 2013

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 22 2013

Extensions

New name from Klaus Brockhaus at the suggestion of Michel Marcus, Nov 22 2013

A157834 Numbers n such that 3n-2 and 3n+2 are both prime.

Original entry on oeis.org

3, 5, 7, 13, 15, 23, 27, 33, 35, 37, 43, 55, 65, 75, 77, 93, 103, 105, 117, 127, 133, 147, 153, 155, 163, 167, 205, 215, 225, 247, 253, 257, 275, 285, 287, 293, 295, 303, 313, 323, 337, 363, 365, 405, 427, 433, 435, 475, 477, 483, 495, 497, 517
Offset: 1

Views

Author

Kyle D. Balliet, Mar 07 2009

Keywords

Comments

Barycenter of cousin primes (A029708; see also A029710, A023200, A046132), divided by 3. When p>3 and p+4 both are prime, then p = 1 (mod 6) and p+2 = 3 (mod 6). - M. F. Hasler, Jan 14 2013

Examples

			15*3 +/- 2 = 43,47 (both prime).
		

Crossrefs

Intersection of A024893 and A153183.

Programs

  • Magma
    [n: n in [1..1000]|IsPrime(3*n-2)and IsPrime(3*n+2)] // Vincenzo Librandi, Dec 13 2010
  • Maple
    select(t -> isprime(3*t+2) and isprime(3*t-2), [seq(t,t=3..1000,2)]); # Robert Israel, May 28 2017
  • Mathematica
    Select[Range[600],AllTrue[3#+{2,-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)

Formula

Intersection of A024893 and A153183.
a(n) = A029708(n)/3. - Zak Seidov, Aug 07 2009
a(n) = A056956(n)*2+1 = (A029710(n)+2)/3 = (A023200(n+1)+2)/3. - M. F. Hasler, Jan 14 2013

A176130 Lesser of a pair (p,p+4) of cousin primes whose arithmetic mean p+2 is a square number.

Original entry on oeis.org

7, 79, 223, 439, 1087, 13687, 56167, 74527, 91807, 95479, 149767, 184039, 194479, 199807, 263167, 314719, 328327, 370879, 651247, 804607, 1071223, 1147039, 1238767, 1306447, 1520287, 1535119, 1718719, 2442967, 2595319, 2614687
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 09 2010

Keywords

Comments

Necessarily p = 9 * (2*m - 1)^2 - 2.

Examples

			(7 + 11)/2 = 3^2, 1st term is prime(4) = 7.
(79 + 83)/2 = 9^2, 2nd term is prime(22) = 79.
m = 173 = prime(40): 21st term is p = 1071223 = prime(83637), p+2 = 3^4 * 5^2 * 23^2.
60th term is p = 27029599 = prime(1684797): p+2 = 3^2 * 1733^2.
		

References

  • L. E. Dickson, History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications 2005.
  • H. Pieper, Zahlen aus Primzahlen. Eine Einfuehrung in die Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, 2. Aufl., 1984.
  • A. Warusfel, Les nombres et leurs mystères, Edition du Seuil, Paris 1980.

Crossrefs

Programs

  • Mathematica
    Select[Range[1617]^2 - 2, And @@ PrimeQ[# + {0, 4}] &] (* Amiram Eldar, Dec 24 2019 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+4) && issquare(n+2) \\ Michel Marcus, Jul 22 2013
    
  • PARI
    forstep(n=3,1e4,2,if(isprime(n^2-2)&&isprime(n^2+2),print1(n^2-2", "))) \\ Charles R Greathouse IV, Jul 23 2013

Extensions

Edited by D. S. McNeil, Nov 18 2010

A178228 Numbers k such that (k^3 - 2, k^3 + 2) is a pair of cousin primes (see A178227).

Original entry on oeis.org

129, 189, 369, 435, 549, 555, 561, 819, 1245, 1491, 1719, 1779, 1839, 1875, 1935, 2175, 2289, 2415, 2451, 2595, 2709, 2769, 3141, 3441, 4401, 4611, 4851, 5655, 5775, 6075, 6099, 6795, 6969, 7125, 7239, 7365, 8109, 8139, 8325, 8361, 8385, 8535, 8685, 9591, 9765
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 23 2010

Keywords

Comments

Necessarily k is an odd multiple of 3, Least significant digit of k is e = 1, 5 or 9 (3^3 - 2, 7^3 + 2 are multiples of 5).

Examples

			189 is a term since 189^3 - 2 = 6751267 = prime(460792), 189^3 + 2 = 6751271 = prime(460793).
12471 is a term since 12471^3 - 2 = 1939562763109 = prime(i), i = 71166976775, 12471^3 + 2 = 1939562763113 = prime(i+1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], And @@ PrimeQ[#^3 + {-2, 2}] &] (* Amiram Eldar, Dec 24 2019 *)
  • PARI
    for(n=1,10000,my(p1=n^3-2,p2=n^3+2);if(isprime(p1)&&isprime(p2)&&ispower((p1+p2)/2,3),print1(n,", "))) \\ Hugo Pfoertner, Dec 24 2019

Extensions

Edited by N. J. A. Sloane, May 23 2010
a(1) and a(21) inserted by Amiram Eldar, Dec 24 2019

A187757 Number of ways to write n=x+y (x,y>0) with 6x-1, 6x+1, 6y+1 and 6y+5 all prime.

Original entry on oeis.org

0, 1, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 4, 4, 2, 3, 2, 6, 6, 5, 4, 2, 6, 5, 4, 4, 2, 6, 4, 4, 4, 3, 5, 7, 5, 5, 3, 4, 9, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 6, 6, 3, 7, 7, 6, 6, 4, 6, 6, 5, 6, 4, 7, 6, 7, 2, 3, 7, 7, 7, 5, 3, 5, 5, 7, 8, 5, 8, 8, 4, 5, 4, 10, 10, 6, 6, 2, 9, 6, 9, 7, 1, 8, 4, 5, 7, 3, 9, 5, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 03 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>1.
This has been verified for n up to 10^9. It implies that there are infinitely many twin primes and also infinitely many cousin primes, since the interval [m!+2,m!+m] of length m-2 contains no prime for any integer m>1.

Examples

			a(92)=1 since 92=40+52 with 6*40-1, 6*40+1, 6*52+1 and 6*52+5 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[6k-1]==True&&PrimeQ[6k+1]==True&&PrimeQ[6(n-k)+1]==True&&PrimeQ[6(n-k)+5]==True,1,0],{k,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]

A194098 Decimal expansion of sum of reciprocals of cousin primes.

Original entry on oeis.org

1, 1, 9, 7, 0, 4, 4, 9
Offset: 1

Views

Author

Kausthub Gudipati, Aug 15 2011

Keywords

Comments

The value is obtained by summing cousin prime pairs with values less than 2^42 (which yields 1.10633...) and a logarithmic extrapolation of Brun's constant A065421.
The estimate by [Park-Lee] is 1.197054+-7e-6. - R. J. Mathar, Feb 09 2013

References

  • Yeonyong Park, Heonsoo Lee, On the several differences between primes, J. Appl. Math. & Computing 13 (2003) vol 1-2, pp 37-51.

Formula

Equals 1.1970449... = (1/7+1/11)+(1/13+1/17)+.. = Sum_{n>=2} (1/A023200(n) + 1/A046132(n)).

A220455 Number of ways to write n=x+y (x>0, y>0) with 3x-2, 3x+2 and 2xy+1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 0, 2, 3, 2, 1, 2, 1, 1, 4, 4, 1, 2, 2, 3, 3, 2, 2, 5, 1, 4, 1, 1, 5, 4, 1, 2, 5, 5, 3, 8, 3, 6, 5, 5, 4, 4, 2, 4, 5, 3, 1, 8, 3, 4, 4, 1, 2, 8, 6, 3, 4, 5, 4, 4, 7, 1, 3, 6, 5, 7, 3, 3, 8, 2, 4, 5, 2, 6, 10, 7, 1, 5, 5, 6, 8, 6, 4, 5, 5, 7, 5, 4, 4, 11, 4, 5, 5, 5, 6, 6, 3, 1, 12, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 15 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>7.
This has been verified for n up to 10^8. It implies that there are infinitely many cousin primes.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Aug 06 2023
Zhi-Wei Sun also made some other similar conjectures, e.g., he conjectured that any integer n>17 can be written as x+y (x>0, y>0) with 2x-3, 2x+3 and 2xy+1 all prime, and each integer n>28 can be written as x+y (x>0, y>0) with 2x+1, 2y-1 and 2xy+1 all prime.
Both conjectures verified for n up to 10^9. - Mauro Fiorentini, Aug 06 2023

Examples

			a(25)=1 since 25=13+12 with 3*13-2, 3*13+2 and 2*13*12+1=313 all prime.
		

Crossrefs

Programs

Previous Showing 41-50 of 154 results. Next