cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 118 results. Next

A121069 Conjectured sequence for jumping champions greater than 1 (most common prime gaps up to x, for some x).

Original entry on oeis.org

2, 4, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070
Offset: 1

Views

Author

Lekraj Beedassy, Aug 10 2006

Keywords

Comments

If n > 2, then a(n) = product of n-1 consecutive distinct prime divisors. E.g. a(5)=210, the product of 4 consecutive and distinct prime divisors, 2,3,5,7. - Enoch Haga, Dec 08 2007
From Bill McEachen, Jul 10 2022: (Start)
Rather than have code merely generating the conjectured values, one can compare values of sequence terms at the same position n. Specifically, locate new maximums where (p,p+even) are both prime, where even=2,4,6,8,... and the datum set is taken with even=4. A new maximum implies a new jumping champion.
Doing this produces the terms 2,4,6,30,210,2310,30030,.... Looking at the plot of a(n) ratio for gap=2/gap=6, the value changes VERY slowly, and is 2.14 after 50 million terms (one can see the trend via Plot 2 of A001359 vs A023201 (3rd option seqA/seqB vs n). The ratio for gap=4/gap=2 ~ 1, implying they are equally frequent. (End)

Crossrefs

Programs

  • Mathematica
    2,4,Table[Product[Prime[k],{k,1,n-1}],{n,3,30}]
  • PARI
    print1("2, 4");t=2;forprime(p=3,97,print1(", ",t*=p)) \\ Charles R Greathouse IV, Jun 11 2011

Formula

Consists of 4 and the primorials (A002110).
a(1) = 2, a(2) = 4, a(3) = 6, a(n+1)/a(n) = Prime[n] for n>2.

Extensions

Corrected and extended by Alexander Adamchuk, Aug 11 2006
Definition corrected and clarified by Jonathan Sondow, Aug 16 2011

A136207 Primes p such that p-6 or p+6 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 151, 157, 163, 167, 173, 179, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Carlos Alves, Dec 21 2007

Keywords

Comments

Either or both of (p-6) and (p+6) is/are prime. - Harvey P. Dale, Jun 22 2019

Crossrefs

Cf. A023201, A046117, A140546 (complement).

Programs

  • Maple
    isA136207 := proc(n)
        if isprime(n) then
            if isprime(n+6) or isprime(n-6) then
                true;
            else
                false;
            end if;
        else
            false ;
        end if;
    end proc:
    A136207 := proc(n)
        option remember;
        local a;
        if n = 1 then
            5 ;
        else
            a := nextprime(procname(n-1)) ;
            while true do
                if isA136207(a) then
                    return a;
                else
                    a := nextprime(a) ;
                end if;
            end do:
        end if;
    end proc:
    seq(A136207(n),n=1..80) ; # R. J. Mathar, Jun 10 2024
  • Mathematica
    dd = 6; DistancePrimesQ1 = (PrimeQ[ # ] && PrimeQ[ # + dd]) &; DistancePrimesQ2 = (PrimeQ[ # ] && PrimeQ[ # - dd] && (# > dd)) &; DistancePrimesQQ = (DistancePrimesQ1[ # ] || DistancePrimesQ2[ # ]) &; DistancePrimes = Select[Range[ # ], DistancePrimesQQ] &; DistancePrimes[1000]
    Alternative by Lei Zhou:
    p = 3; Table[While[p = NextPrime[p]; ! (PrimeQ[p - 6] || PrimeQ[p + 6])]; p, {n, 1, 100}]
    Select[Prime[Range[3,100]],AnyTrue[#+{6,-6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2019 *)

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A054903 Composite numbers n such that sigma(n)+6 = sigma(n+6), where sigma=A000203.

Original entry on oeis.org

104, 147, 596, 1415, 4850, 5337, 370047, 1630622, 35020303, 120221396, 3954451796, 742514284703
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Complement of A023201 with respect to A015914.
Intersection of A015914 and A018252.
Below 1000000 there are only 7 such composite numbers, compared with more than 16000 primes.
a(13) > 10^13. - Giovanni Resta, Jul 11 2013

Examples

			n=104, sigma(104)+6 = 210+6 = 216 = sigma(104+6) = sigma(110).
a(4) = 1415 = 5*283, 1415+6 = 1421 = 7*7*29:
sigma(1415) = 1+5+283+1415 = 1704,
sigma(1421) = 1+7+29+49+203+1421 = 1710 = sigma(1415)+6.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 104, p. 37, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

More terms from Jud McCranie, May 25 2000
New definition from Reinhard Zumkeller, Jan 27 2009
Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of R. J. Mathar.
a(12) from Giovanni Resta, Jul 11 2013

A093738 Number of pairs of consecutive prime (p,q) with q-p=6 and q < 10^n.

Original entry on oeis.org

0, 7, 44, 299, 1940, 13549, 99987, 768752, 6089791, 49392723, 408550278, 3435528229, 29289695650, 252672394234, 2201981901415, 19360330918473, 171550299264139, 1530609037414453
Offset: 1

Views

Author

Enoch Haga, Apr 15 2004

Keywords

Comments

Note that one has to be careful to distinguish between pairs of consecutive primes (p,q) with q-p = 6 (A031924), and pairs of primes (p,q) with q-p = 6 (A023201). Here we consider the former, whereas A080841 considers the latter. - N. J. A. Sloane, Mar 07 2021

Examples

			a(2) = 7 because there are 7 prime gaps of 6 below 10^2.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Count[Differences@ Prime@ Range[PrimePi[10^(# - 1) + 1], PrimePi[10^# - 1]], 6] &, 8] (* Michael De Vlieger, Apr 09 2021 *)
  • UBASIC
    20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=B-A; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X);, 160 next (This program simultaneously finds values from 2 to 34 -- if gap=2 add 1-- adjust lines 80 and 100 for desired 10^n)

Extensions

a(10)-a(13) from Washington Bomfim, Jun 22 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018

A104229 Primes equal to the product of two successive sexy primes plus 6.

Original entry on oeis.org

61, 97, 193, 397, 673, 1153, 1597, 1933, 4093, 7393, 12097, 37633, 64513, 70753, 96097, 122497, 126733, 136897, 190093, 211597, 256033, 313597, 329473, 348097, 430333, 541693, 781453, 891133, 988033, 1267873, 1416097, 1674433, 2102497
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 02 2005

Keywords

Comments

Primes of the form 6 + A111192(i). - R. J. Mathar, Nov 26 2008
All numbers in this sequence are of the form 12n + 1. Also, as one would expect from a random distribution of sexy prime pairs, with the exception of 61, in decimal two thirds of these numbers end in 3, and the other third end in 7. - Daniel Mondot, Apr 29 2024

Crossrefs

Extensions

Extended by R. J. Mathar, Nov 26 2008

A143205 Numbers having exactly two distinct prime factors p, q with q = p+6.

Original entry on oeis.org

55, 91, 187, 247, 275, 391, 605, 637, 667, 1147, 1183, 1375, 1591, 1927, 2057, 2491, 3025, 3127, 3179, 3211, 4087, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7387, 8281, 8993, 9991, 10807, 11227, 12091, 15125, 15341, 15379, 17947, 19343, 22627, 23707
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2008

Keywords

Comments

Subsequence of A007774.
A111192 is a subsequence.
Subsequence of A195118. - Reinhard Zumkeller, Sep 13 2011

Examples

			a(1) = 55 = 5 * 11 = A023201(1) * A046117(1).
a(2) = 91 = 7 * 13 = A023201(2) * A046117(2).
a(3) = 187 = 11 * 17 = A023201(3) * A046117(3).
a(4) = 247 = 13 * 19 = A023201(4) * A046117(4).
a(5) = 275 = 5^2 * 11 = A023201(1)^2 * A046117(1).
a(6) = 391 = 17 * 23 = A023201(5) * A046117(5).
a(7) = 605 = 5 * 11^2 = A023201(1) * A046117(1)^2.
a(8) = 637 = 7^2 * 13 = A023201(2)^2 * A046117(2).
a(9) = 667 = 23 * 29 = A023201(6) * A046117(6).
a(10) = 1147 = 31 * 37 = A023201(7) * A046117(7).
		

Crossrefs

Programs

  • Haskell
    a143205 n = a143205_list !! (n-1)
    a143205_list = filter f [1,3..] where
       f x = length pfs == 2 && last pfs - head pfs == 6 where
           pfs = a027748_row x
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    okQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},Length[fi]==2 && Last[fi]-First[fi]==6]; Select[Range[25000],okQ]  (* Harvey P. Dale, Apr 18 2011 *)

Formula

A143201(a(n)) = 7.
A020639(a(n)) in A023201 and A006530(a(n)) in A046117.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023201(n)+2)^2-9) = 0.058842810164... . - Amiram Eldar, Oct 26 2024

A156274 List of prime pairs of the form (p, p+6).

Original entry on oeis.org

5, 11, 7, 13, 11, 17, 13, 19, 17, 23, 23, 29, 31, 37, 37, 43, 41, 47, 47, 53, 53, 59, 61, 67, 67, 73, 73, 79, 83, 89, 97, 103, 101, 107, 103, 109, 107, 113, 131, 137, 151, 157, 157, 163, 167, 173, 173, 179, 191, 197, 193, 199, 223, 229, 227, 233, 233, 239, 251, 257
Offset: 1

Views

Author

Vincenzo Librandi, Feb 07 2009

Keywords

Comments

A023201 and A046117 interleaved. [From R. J. Mathar, Feb 19 2009]

Examples

			For p=5, p+6=11, (5,11); p=7, p+6=13, (7,13); p=11, p+6=17, (11,17)
		

Programs

  • Mathematica
    Flatten[Select[{#, # + 6}&/@Prime[Range[100]], PrimeQ[Last[#]]&]] (* Vincenzo Librandi, Apr 06 2013 *)

A227346 Distance between consecutive pairs of primes differing by 6 (p, p+6).

Original entry on oeis.org

2, 4, 2, 4, 6, 8, 6, 4, 6, 6, 8, 6, 6, 10, 14, 4, 2, 4, 24, 20, 6, 10, 6, 18, 2, 30, 4, 6, 18, 6, 6, 8, 6, 30, 4, 20, 16, 6, 14, 6, 10, 50, 10, 14, 4, 42, 38, 16, 6, 8, 16, 6, 8, 6, 6, 28, 6, 6, 24, 50, 6, 18, 70, 2, 30, 4, 20, 4, 60, 6, 24, 6, 14, 22, 20, 30
Offset: 1

Views

Author

Luca Pezzullo, Jul 08 2013

Keywords

Crossrefs

Cf. A023201 (n and n+6 are primes).
Cf. A053320 (differences for Cousin primes).

Programs

  • Maple
    with(numtheory): pre:=0: for n from 1 to 3000 do if isprime(n) and isprime(n+6) then if pre<>0 then printf("%d, ", n-pre) fi: pre:=n fi od: # adapted from original program by C. Ronaldo for A053320
  • Mathematica
    Differences[Select[Prime[Range[200]], PrimeQ[# + 6] &]] (* T. D. Noe, Jul 09 2013 *)

Formula

a(n) = A023201(n+1) - A023201(n). - Zak Seidov, Sep 20 2013

A227898 Number of primes p < n with p + 6 and n + (n - p)^2 both prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 4, 3, 2, 2, 3, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 2, 5, 5, 2, 5, 4, 2, 4, 5, 2, 7, 5, 3, 4, 5, 3, 3, 4, 4, 3, 5, 4, 9, 9, 2, 5, 3, 4, 8, 6, 2, 5, 8, 3, 4, 7, 3, 10, 5, 2, 7, 4, 5, 10, 6, 4, 6, 6, 2, 6, 8, 3, 6, 5, 3, 6, 6, 5, 9, 4, 5, 7, 5, 4, 9, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5.
(ii) For any integer n > 5, there is a prime p with p + 6 and n*(n - p) - 1 both prime.

Examples

			a(6) = 1 since 5, 5 + 6 = 11 and 6 + (6 - 5)^2 = 7 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[i]+6]&&PrimeQ[n+(n-Prime[i])^2],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]
Previous Showing 41-50 of 118 results. Next