cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A054987 Smallest composite x such that sigma(x+2^n) = sigma(x) + 2^n.

Original entry on oeis.org

434, 305635357, 27, 39, 106645, 69, 2275, 63, 6475, 249, 7735, 3703, 10803, 16383, 58869, 51181, 87951, 1695, 9579, 105237, 98829, 1143369, 789609, 11625, 14038691, 178975, 48627929, 1881333, 402373721, 2667945, 82915599, 353195221, 70106601
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

The sequence is initiated by smallest of A015915. Special primes of A023202, A049488-A049491 also satisfy the Sigma[p+2^w]=Sigma[p]+2^w relation

Examples

			For the term 69: Sigma[69+2^6] = Sigma[133] = 1+7+19+133 = Sigma[69]+64 = (1+3+23+69)+64 = 160.
		

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[ 1, 110000 ], Equal[ EulerPhi[ #+2^k ]-EulerPhi[ # ]-2^k, 0 ] &&!PrimeQ[ # ]& ], {k, 1, 22} ]
  • PARI
    a(n)=my(N=2^n,x=3); while(isprime(x++) || sigma(x+N) != sigma(x)+N,); x \\ Charles R Greathouse IV, Mar 11 2014

Extensions

More terms from Labos Elemer, Aug 14 2003
a(21) corrected and a(27)-a(33) from Donovan Johnson, Nov 30 2008

A156320 List of prime pairs of the form (p, p+8).

Original entry on oeis.org

3, 11, 5, 13, 11, 19, 23, 31, 29, 37, 53, 61, 59, 67, 71, 79, 89, 97, 101, 109, 131, 139, 149, 157, 173, 181, 191, 199, 233, 241, 263, 271, 269, 277, 359, 367, 389, 397, 401, 409, 431, 439, 449, 457, 479, 487, 491, 499, 563, 571, 569, 577, 593, 601, 599, 607, 653, 661, 683, 691, 701
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Select[{#, # + 8} &/@Prime[Range[1000]], PrimeQ[Last[#]]&]] (* Vincenzo Librandi, Nov 01 2012 *)
  • Python
    from sympy import isprime, primerange
    for pn in primerange(1,300):
        if isprime(pn+8):
            print(pn, pn+8)
    # Stefano Spezia, Dec 06 2018

Formula

a(2n+1) = A023202(n+1). a(2n+2) = A092402(n+1). [R. J. Mathar, Feb 09 2009]

A231608 Table whose n-th row consists of primes p such that p + 2n is also prime, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 5, 7, 11, 3, 7, 13, 17, 3, 5, 11, 19, 29, 5, 7, 11, 13, 37, 41, 3, 7, 13, 23, 17, 43, 59, 3, 5, 11, 19, 29, 23, 67, 71, 5, 7, 17, 17, 31, 53, 31, 79, 101, 3, 11, 13, 23, 19, 37, 59, 37, 97, 107, 7, 11, 13, 31, 29, 29, 43, 71, 41, 103, 137
Offset: 1

Views

Author

T. D. Noe, Nov 26 2013

Keywords

Examples

			The following sequences are read by antidiagonals
{3, 5, 11, 17, 29, 41, 59, 71, 101, 107,...}
{3, 7, 13, 19, 37, 43, 67, 79, 97, 103,...}
{5, 7, 11, 13, 17, 23, 31, 37, 41, 47,...}
{3, 5, 11, 23, 29, 53, 59, 71, 89, 101,...}
{3, 7, 13, 19, 31, 37, 43, 61, 73, 79,...}
{5, 7, 11, 17, 19, 29, 31, 41, 47, 59,...}
{3, 5, 17, 23, 29, 47, 53, 59, 83, 89,...}
{3, 7, 13, 31, 37, 43, 67, 73, 97, 151,...}
{5, 11, 13, 19, 23, 29, 41, 43, 53, 61,...}
{3, 11, 17, 23, 41, 47, 53, 59, 83, 89,...}
...
		

Crossrefs

Cf. A020483 (numbers in first column).
Cf. A086505 (numbers on the diagonal).

Programs

  • Maple
    A231608 := proc(n,k)
        local j,p ;
        j := 0 ;
        p := 2;
        while j < k do
            if isprime(p+2*n ) then
                j := j+1 ;
            end if;
            if j = k then
                return p;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    for n from 1 to 10 do
        for k from 1 to 10 do
            printf("%3d ",A231608(n,k)) ;
        end do;
        printf("\n") ;
    end do: # R. J. Mathar, Nov 19 2014
  • Mathematica
    nn = 10; t = Table[Select[Range[100*nn], PrimeQ[#] && PrimeQ[# + 2*n] &, nn], {n, nn}]; Table[t[[n-j+1, j]], {n, nn}, {j, n}]

A262085 Numbers n such that phi(n + 8) = phi(n) + 8 where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

3, 5, 11, 23, 24, 29, 36, 42, 48, 50, 53, 56, 59, 71, 72, 80, 89, 101, 102, 125, 131, 132, 149, 173, 176, 191, 230, 233, 248, 263, 269, 359, 368, 389, 401, 431, 449, 464, 479, 491, 563, 569, 593, 599, 638, 653, 656, 683, 701, 719, 743, 761, 821, 848, 911, 929, 983
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

Sequence includes numbers n such that n and n + 8 are both prime (A023202).
Sequence also includes numbers n equal to 8*(a Mersenne prime) (cf A000668).
Sequence also includes n such that n/16 and n/8 + 1 are both odd primes.
Contains more composites than sequences A262084 and A262086. This is most likely due to the fact that 8 is a power of 2, as in A001838.

Examples

			3 since phi(11) = phi(3) + 8 (3 and 11 are both prime).
24 is a solution since phi(32) = phi(24) + 8 (24 is 8 * 3; 3 is a Mersenne prime).
		

Crossrefs

Cf. A000010.
Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262086 (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+8) eq EulerPhi(n)+8]; // Vincenzo Librandi, Sep 11 2015
    
  • Maple
    select(t -> numtheory:-phi(t+8) = numtheory:-phi(t)+8, [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 8)== EulerPhi[#] + 8 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 8) == eulerphi(n) + 8 \\ Anders Hellström, Sep 11 2015
    
  • Sage
    [n for n in (1..1000) if euler_phi(n+8) == euler_phi(n)+8] # Bruno Berselli, Mar 04 2016

A361483 Primes p such that p + 256 is also prime.

Original entry on oeis.org

7, 13, 37, 61, 97, 103, 127, 163, 193, 211, 223, 307, 313, 331, 337, 397, 421, 463, 487, 541, 571, 601, 607, 631, 673, 691, 727, 757, 853, 907, 937, 967, 1021, 1033, 1051, 1063, 1117, 1153, 1171, 1231, 1237, 1297, 1303, 1327, 1381, 1453, 1531, 1567, 1621, 1657, 1693, 1723
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 1 (mod 6).

Examples

			61 and 61 + 256 = 317 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), this sequence (k = 256), A361484 (k = 512), A361485 (k = 1024).

A307563 Numbers k such that both 6k - 1 and 6k + 7 are prime.

Original entry on oeis.org

1, 2, 4, 5, 9, 10, 12, 15, 17, 22, 25, 29, 32, 39, 44, 45, 60, 65, 67, 72, 75, 80, 82, 94, 95, 99, 100, 109, 114, 117, 120, 124, 127, 137, 152, 155, 164, 169, 172, 177, 185, 194, 199, 204, 205, 214, 215, 220, 229, 240, 242, 247, 254, 260, 262, 267, 269, 270, 289, 304, 312, 330, 334, 347, 355, 359, 369, 374, 379, 389
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 140 such numbers between 1 and 1000.
These numbers correspond to all the prime pairs which differ by 8 except 3 and 11.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd + c - d, 6cd - c + d or 6cd + c + d - 1, that is, they are not (6c - 1)d - c - 1, (6c - 1)d + c, (6c + 1)d - c or (6c + 1)d + c - 1.

Examples

			a(4) = 5, so 6(5) - 1 = 29 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

The primes are A023202, A092402, A031926.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A153218.
Cf. also A307561, A307562.

Programs

  • Maple
    select(t -> isprime(6*t-1) and isprime(6*t+7), [$1..500]); # Robert Israel, May 27 2019
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A361484 Primes p such that p + 512 is also prime.

Original entry on oeis.org

11, 29, 59, 89, 101, 107, 131, 149, 179, 197, 227, 239, 257, 311, 317, 347, 479, 509, 521, 557, 617, 641, 659, 701, 719, 809, 887, 911, 941, 947, 971, 977, 1019, 1031, 1097, 1109, 1151, 1181, 1187, 1229, 1277, 1289, 1319, 1361, 1367, 1439, 1481, 1487, 1499, 1571, 1601
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 5 (mod 6).

Examples

			59 and 59 + 512 = 571 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), A361483 (k = 256), this sequence (k = 512), A361485 (k = 1024).

A361679 A(n,k) is the n-th prime p such that p + 2^k is also prime; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 3, 7, 11, 3, 5, 13, 17, 5, 7, 11, 19, 29, 3, 11, 13, 23, 37, 41, 3, 7, 29, 31, 29, 43, 59, 7, 11, 19, 41, 37, 53, 67, 71, 11, 13, 23, 37, 47, 43, 59, 79, 101, 7, 29, 37, 29, 43, 71, 67, 71, 97, 107, 5, 37, 59, 61, 53, 67, 107, 73, 89, 103, 137
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2023

Keywords

Examples

			Square array A(n,k) begins:
    3,   3,   3,   3,   5,   3,   3,   7,  11,   7, ...
    5,   7,   5,   7,  11,   7,  11,  13,  29,  37, ...
   11,  13,  11,  13,  29,  19,  23,  37,  59,  67, ...
   17,  19,  23,  31,  41,  37,  29,  61,  89,  73, ...
   29,  37,  29,  37,  47,  43,  53,  97, 101,  79, ...
   41,  43,  53,  43,  71,  67,  71, 103, 107, 127, ...
   59,  67,  59,  67, 107,  73,  83, 127, 131, 139, ...
   71,  79,  71,  73, 131, 103, 101, 163, 149, 157, ...
  101,  97,  89,  97, 149, 109, 113, 193, 179, 163, ...
  107, 103, 101, 151, 167, 127, 149, 211, 197, 193, ...
		

Crossrefs

Row n=1 gives A056206.
Main diagonal gives A361680.
Cf. A000040.

Programs

  • Maple
    A:= proc() option remember; local f; f:= proc() [] end;
          proc(n, k) option remember; local p;
            p:= `if`(nops(f(k))=0, 1, f(k)[-1]);
            while nops(f(k))
    				

A046141 p, p+8 and p+12 are primes.

Original entry on oeis.org

5, 11, 29, 59, 71, 89, 101, 269, 389, 431, 449, 479, 491, 761, 929, 1289, 1439, 1481, 1559, 1571, 1601, 2129, 2339, 2381, 2531, 2609, 2699, 2741, 2789, 3011, 3209, 3449, 3911, 4721, 5471, 5519, 5639, 5849, 6569, 6899, 6959
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range@ 7000, AllTrue[{#, # + 8, # + 12}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
    Select[Prime[Range[1000]],AllTrue[#+{8,12},PrimeQ]&] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+8) && isprime(p+12), print1(p, ", "))); \\ Michel Marcus, Jul 24 2015

A136208 Primes p such that p-8 or p+8 is prime.

Original entry on oeis.org

3, 5, 11, 13, 19, 23, 29, 31, 37, 53, 59, 61, 67, 71, 79, 89, 97, 101, 109, 131, 139, 149, 157, 173, 181, 191, 199, 233, 241, 263, 269, 271, 277, 359, 367, 389, 397, 401, 409, 431, 439, 449, 457, 479, 487, 491, 499, 563, 569, 571, 577, 593, 599, 601, 607, 653
Offset: 1

Views

Author

Carlos Alves, Dec 21 2007, Dec 22 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]], PrimeQ[ # - 8] || PrimeQ[ # + 8] &] (* Stefan Steinerberger, Dec 22 2007 *)
    Select[Prime[Range[150]],AnyTrue[#+{8,-8},PrimeQ]&] (* Harvey P. Dale, Jul 12 2022 *)

Extensions

More terms from Stefan Steinerberger, Dec 22 2007
Previous Showing 21-30 of 38 results. Next