cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 93 results. Next

A073423 Sums of two powers of zero: triangle read by rows: T(m,n) = 0^n + 0^m, n >= 0, m = 0..n.

Original entry on oeis.org

2, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Jeremy Gardiner, Jul 30 2002

Keywords

Examples

			T(2,1) = 0^2 + 0^0 = 1.
Triangle begins:
  2;
  1, 0;
  1, 0, 0;
  1, 0, 0, 0;
  1, 0, 0, 0, 0;
  1, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Column k=0 gives A054977.

Programs

  • PARI
    A073423(n) = if(!n,2,ispolygonal(n,3)); \\ Antti Karttunen, Jan 19 2025
  • Python
    from math import isqrt
    def A073423(n): return int((k:=n<<1)==(m:=isqrt(k))*(m+1)) if n else 2 # Chai Wah Wu, Nov 09 2024
    

Formula

a(0) = 2; and for n > 0, a(n) = A010054(n). [As a flat sequence] - Antti Karttunen, Jan 19 2025

A118011 Complement of the Connell sequence (A001614); a(n) = 4*n - A001614(n).

Original entry on oeis.org

3, 6, 8, 11, 13, 15, 18, 20, 22, 24, 27, 29, 31, 33, 35, 38, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 61, 63, 66, 68, 70, 72, 74, 76, 78, 80, 83, 85, 87, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

a(n) is the position of the second appearance of n in A117384, where A117384(m) = A117384(k) and k = 4*A117384(m) - m. The Connell sequence (A001614) is generated as: 1 odd, 2 even, 3 odd, ...

Crossrefs

A171152 gives partial sums.

Programs

  • Magma
    [2*n+Round(Sqrt(2*n)): n in [1..70]]; // Vincenzo Librandi, Apr 16 2015
    
  • Mathematica
    Table[2 n + Round[Sqrt[2 n]], {n, 70}] (* Vincenzo Librandi, Apr 16 2015 *)
  • Python
    from math import isqrt
    def A118011(n): return (m:=n<<1)+(k:=isqrt(m))+int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

A001614(n) = A118012(a(n)).
a(n) = 2n+[(1+sqrt(8n-7))/2]. - Juri-Stepan Gerasimov Aug 25 2009
a(n) = 2*n+round(sqrt(2*n)). - Gerald Hillier, Apr 16 2015
From Robert Israel, Apr 20 2015 (Start):
a(n) = 2*n + 1 + Sum_{j=0..n-2} A023531(j).
G.f.: 2*x/(1-x)^2 + x/(1-x) * Sum_{j=0..oo} x^(j*(j+1)/2) = 2*x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
a(n) = n+A014132(n). - Chai Wah Wu, Oct 19 2024

A007604 a(n) = a(n-1) + a(n-1-(number of odd terms so far)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 16, 22, 31, 40, 52, 68, 90, 121, 152, 192, 244, 312, 402, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 15080, 18072, 21708, 26140, 31560, 38212, 46408, 56550, 69161, 81772, 96852
Offset: 1

Views

Author

Keywords

Comments

A003056(n) gives the number of odd terms in the first n terms of this sequence. Modulo 2, this sequence becomes A023531. - T. D. Noe, Jul 24 2007
The present definition was the original definition of this sequence. It was later changed to "Sequence formed from rows of triangle A046936", but this seems less satisfactory. - N. J. A. Sloane, Oct 26 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007604 n = a007604_list !! (n-1)
    a007604_list = concat $ map tail $ tail a046936_tabl
    -- Reinhard Zumkeller, Jan 01 2014
  • Maple
    A[1]:= 1: A[2]:= 2: o:= 1:
    for n from 3 to 100 do
      A[n]:= A[n-1] + A[n-1-o];
      if A[n]::odd then o:= o+1 fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 14 2023
  • Mathematica
    a[n_Integer] := a[n] = Block[{c, k}, c = 0; k = 1; While[k < n, If[ OddQ[ a[k] ], c++ ]; k++ ]; Return[a[n - 1] + a[n - 1 - c] ] ]; a[1] = 1; a[2] = 2; Table[ a[n], {n, 0, 60} ]

Extensions

Entry revised by N. J. A. Sloane, Oct 26 2014

A101508 Product of binomial matrix and the Mobius matrix A051731.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 3, 1, 16, 8, 6, 4, 1, 32, 16, 11, 10, 5, 1, 64, 32, 21, 20, 15, 6, 1, 128, 64, 42, 36, 35, 21, 7, 1, 256, 128, 85, 64, 70, 56, 28, 8, 1, 512, 256, 171, 120, 127, 126, 84, 36, 9, 1, 1024, 512, 342, 240, 220, 252, 210, 120, 45, 10, 1, 2048, 1024, 683, 496, 385, 463, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2004

Keywords

Comments

Row sums are A101509. Diagonal sums are A101510.
The matrix inverse appears to be A128313. - R. J. Mathar, Mar 22 2013
Read as upper triangular matrix, this can be seen as "recurrences in A135356 applied to A023531" [Paul Curtz, Mar 03 2017]. - The columns are: A000079, A131577, A024495, A000749, A139761, ... Column n differs after the (n+1)-th nonzero term on from the binomial coefficients C(k,n). - M. F. Hasler, Mar 05 2017

Examples

			Rows begin
  1;
  2,1;
  4,2,1;
  8,4,3,1;
  16,8,6,4,1;
  ...
		

Programs

  • Maple
    A101508 := proc(n,k)
        a := 0 ;
        for i from 0 to n do
            if modp(i+1,k+1) = 0 then
                a := a+binomial(n,i) ;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    t[n_, k_] := Sum[If[Mod[i + 1, k + 1] == 0, Binomial[n, i], 0], {i, 0, n}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
  • PARI
    T(n,k)=sum(i=0,n, if((i+1)%(k+1)==0, binomial(n, i))) \\ M. F. Hasler, Mar 05 2017

Formula

T(n, k) = Sum_{i=0..n} if(mod(i+1, k+1)=0, binomial(n, i), 0).
Rows have g.f. x^k/((1-x)^(k+1)-x^(k+1)).

A173007 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n and q = 3.

Original entry on oeis.org

1, 3, 1, 27, 12, 1, 729, 351, 39, 1, 59049, 29160, 3510, 120, 1, 14348907, 7144929, 882090, 32670, 363, 1, 10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1, 22876792454961, 11433166050879, 1427185336941, 54665851779, 674887059, 2685501, 3279, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 07 2010

Keywords

Comments

Triangle T(n,k), read by rows, given by [3,6,27,72,243,702,2187,6480,...] DELTA [1,0,3,0,9,0,27,0,81,0,243,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 01 2011

Examples

			Triangle begins as:
            1;
            3,          1;
           27,         12,         1;
          729,        351,        39,        1;
        59049,      29160,      3510,      120,      1;
     14348907,    7144929,    882090,    32670,    363,    1;
  10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), A108084 (q=2), this sequence (q=3), A173008 (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,3): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    (* First program *)
    p[x_, n_, q_] = If[n==0, 1, Product[x + q^i, {i, 1, n}]];
    Table[CoefficientList[p[x, n, 3], x], {n, 0, 10}] (* modified by G. C. Greubel, Feb 20 2021 *)
    (* Second program *)
    T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

p(x,n,q) = 1 if n=0, Product_{i=1..n} (x + q^i) otherwise, with q=3.
T(n,k) = 3^n*T(n-1,k) + T(n-1,k-1), T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A290000(n+1). - G. C. Greubel, Feb 20 2021

Extensions

Edited by G. C. Greubel, Feb 20 2021

A049324 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 3, 6, 1, 0, 15, 9, 1, 0, 18, 36, 12, 1, 0, 9, 81, 66, 15, 1, 0, 0, 108, 216, 105, 18, 1, 0, 0, 81, 459, 450, 153, 21, 1, 0, 0, 27, 648, 1305, 810, 210, 24, 1, 0, 0, 0, 594, 2673, 2970, 1323, 276, 27, 1, 0, 0, 0, 324, 3915, 7938
Offset: 1

Views

Author

Keywords

Examples

			{1}; {3,1}; {3,6,1}; {0,15,9,1}; {0,18,36,12,1}; ...
		

Crossrefs

a(n, m) := s1(-2, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.

Formula

a(n, m) = 3*(3*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(2, m)).

A108084 Triangle, read by rows, where T(0,0) = 1, T(n,k) = 2^n*T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 2, 1, 8, 6, 1, 64, 56, 14, 1, 1024, 960, 280, 30, 1, 32768, 31744, 9920, 1240, 62, 1, 2097152, 2064384, 666624, 89280, 5208, 126, 1, 268435456, 266338304, 87392256, 12094464, 755904, 21336, 254, 1, 68719476736, 68451041280, 22638755840, 3183575040, 205605888, 6217920, 86360, 510, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [2, 2, 8, 12, 32, 56, 128, 240, 512, ...] DELTA [1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, ...] = A014236 (first zero omitted) DELTA A077957 where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 23 2006

Examples

			Triangle begins:
      1;
      2,     1;
      8,     6,    1;
     64,    56,   14,    1;
   1024,   960,  280,   30,  1;
  32768, 31744, 9920, 1240, 62, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), this sequence (q=2), A173007 (q=3), A173008 (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    T[n_, k_, q_]:= T[n,k,q]= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

Sum_{k=0..n} T(n, k) = A028362(n).
T(n,0) = 2^(n*(n+1)/2) = A006125(n+1). - Philippe Deléham, Nov 05 2006
T(n,k) = 2^binomial(n+1-k,2) * A022166(n,k) for 0 <= k <= n. - Werner Schulte, Mar 25 2019

A147716 Triangle of coefficients in expansion of (14 + x)^n.

Original entry on oeis.org

1, 14, 1, 196, 28, 1, 2744, 588, 42, 1, 38416, 10976, 1176, 56, 1, 537824, 192080, 27440, 1960, 70, 1, 7529536, 3226944, 576240, 54880, 2940, 84, 1, 105413504, 52706752, 11294304, 1344560, 96040, 4116, 98, 1, 1475789056, 843308032, 210827008, 30118144, 2689120, 153664, 5488, 112, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2008

Keywords

Comments

Triangle T(n,k), read by rows, given by [14, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
       1;
      14,      1;
     196,     28,     1;
    2744,    588,    42,    1;
   38416,  10976,  1176,   56,  1;
  537824, 192080, 27440, 1960, 70, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), this sequence (q=14), A027467 (q=15).

Programs

  • Magma
    [14^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 15 2021
    
  • Mathematica
    With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* Georg Fischer, Feb 17 2020 *)
  • Sage
    flatten([[14^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021

Formula

T(n,k) = binomial(n,k) * 14^(n-k).
G.f.: 1/(1 - 14*x - x*y). - R. J. Mathar, Aug 12 2015
Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - G. C. Greubel, May 15 2021

Extensions

a(36) corrected by Georg Fischer, Feb 17 2020

A173008 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n, column 0<=k<=n, and q = 4.

Original entry on oeis.org

1, 4, 1, 64, 20, 1, 4096, 1344, 84, 1, 1048576, 348160, 22848, 340, 1, 1073741824, 357564416, 23744512, 371008, 1364, 1, 4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1, 72057594037927936, 24017731997138944, 1600791219535872, 25384570585088, 99158478848, 95414592, 21844, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 07 2010

Keywords

Comments

Row sums are 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, ... (partial products of A092896).
Triangle T(n,k), read by rows, given by [4,12,64,240,1024,4032,16384,...] DELTA [1,0,4,0,16,0,64,0,256,0,1024,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 01 2011

Examples

			Triangle begins as:
              1;
              4,             1;
             64,            20,           1;
           4096,          1344,          84,          1;
        1048576,        348160,       22848,        340,       1;
     1073741824,     357564416,    23744512,     371008,    1364,    1;
  4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), A108084 (q=2), A173007 (q=3), this sequence (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Maple
    P:= 1: A:= 1:
    for n from 1 to 12 do
      P:= expand(P*(x+4^n));
      A:= A, seq(coeff(P,x,j),j=0..n)
    od:
    A; # Robert Israel, Aug 12 2015
  • Mathematica
    (* First program *)
    p[x_, n_, q_]= If[n==0, 1, Product[x + q^i, {i,n}]];
    Table[CoefficientList[p[x, n, 4], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Feb 20 2021 *)
    (* Second program *)
    T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

T(n,k) = 4^n*T(n-1,k) + T(n-1,k-1) with T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A309327(n+1). - G. C. Greubel, Feb 20 2021

A291203 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2017

Keywords

Comments

Positive elements in column t=1 give A034855.
Elements in rows h=0 give A023531.
Elements in rows h=1 give A059297.
Positive row sums per layer give A235595.
Positive column sums per layer give A061356.

Examples

			n h\t: 0   1   2  3  4 5 : A235595 : A061356          : A000272
-----+-------------------+---------+------------------+--------
0 0  : 1                 :         :                  : 1
-----+-------------------+---------+------------------+--------
1 0  : 0   1             :      1  :   .              :
1 1  : 0                 :         :   1              : 1
-----+-------------------+---------+------------------+--------
2 0  : 0   0   1         :      1  :   .   .          :
2 1  : 0   2             :      2  :   .              :
2 2  : 0                 :         :   2   1          : 3
-----+-------------------+---------+------------------+--------
3 0  : 0   0   0  1      :      1  :   .   .   .      :
3 1  : 0   3   6         :      9  :   .   .          :
3 2  : 0   6             :      6  :   .              :
3 3  : 0                 :         :   9   6   1      : 16
-----+-------------------+---------+------------------+--------
4 0  : 0   0   0  0  1   :      1  :   .   .   .  .   :
4 1  : 0   4  24 12      :     40  :   .   .   .      :
4 2  : 0  36  24         :     60  :   .   .          :
4 3  : 0  24             :     24  :   .              :
4 4  : 0                 :         :  64  48  12  1   : 125
-----+-------------------+---------+------------------+--------
5 0  : 0   0   0  0  0 1 :      1  :   .   .   .  . . :
5 1  : 0   5  80 90 20   :    195  :   .   .   .  .   :
5 2  : 0 200 300 60      :    560  :   .   .   .      :
5 3  : 0 300 120         :    420  :   .   .          :
5 4  : 0 120             :    120  :   .              :
5 5  : 0                 :         : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
           binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
        end:
    g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
         Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
    g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

Sum_{i=0..n} F(n,i,n-i) = A243014(n) = 1 + A038154(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000272(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A089946(n-1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A234953(n+1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1)*(n+1) * F(n,h,t) = A001854(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A235596(n+1).
F(2n,n,n) = A126804(n) for n>0.
F(n,0,n) = 1 = A000012(n).
F(n,1,1) = n = A001477(n) for n>1.
F(n,n-1,1) = n! = A000142(n) for n>0.
F(n,1,n-1) = A002378(n-1) for n>0.
F(n,2,1) = A000551(n).
F(n,3,1) = A000552(n).
F(n,4,1) = A000553(n).
F(n,1,2) = A001788(n-1) for n>2.
F(n,0,0) = A000007(n).
Previous Showing 61-70 of 93 results. Next