1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
Offset: 1
A245466
a(n) = sigma_1(1) + sigma_2(2) + sigma_3(3) + ... + sigma_n-1(n-1) + sigma_n(n).
Original entry on oeis.org
1, 6, 34, 307, 3433, 50883, 874427, 17717436, 405157609, 10414924259, 295726594871, 9214021138217, 312089127730471, 11424774176377721, 449318695089164129, 18896344248070459234, 846136606134407223412, 40192694877626586149007, 2018612350537940175272987
Offset: 1
a(1) = 1 because sigma_1(1) = sigma(1) = 1.
a(2) = 6: sigma_1(1) + sigma_2(2) = 1 + (1^2 + 2^2) = 6.
a(3) = 34: sigma_1(1) + sigma_2(2) + sigma_3(3) = 6 + (1^3 + 3^3) = 34.
a(4) = 307: sigma_1(1) + ... + sigma_4(4) = 34 + (1^4 + 2^4 + 4^4) = 307.
-
[&+[DivisorSigma(i, i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Jul 29 2014
-
[n eq 1 select 1 else Self(n-1)+ DivisorSigma(n, n): n in [1..20]]; // Vincenzo Librandi, Aug 05 2015
-
B:= [seq(numtheory:-sigma[n](n),n=1..100)]:
seq(add(B[i],i=1..n),n=1..100); # Robert Israel, Jul 28 2014
-
Table[Sum[DivisorSigma[k, k], {k, n}], {n, 20}]
Accumulate[Table[DivisorSigma[n,n],{n,20}]] (* Harvey P. Dale, Apr 10 2018 *)
-
a(n) = sum(i=1,n,sigma(i,i))
vector(50, n, a(n)) \\ Derek Orr, Jul 27 2014
A363646
Expansion of Sum_{k>0} (1/(1 - (k*x)^k)^2 - 1).
Original entry on oeis.org
2, 11, 58, 565, 6256, 95762, 1647094, 33752329, 774919720, 20029303030, 570623341234, 17838801038274, 605750213184520, 22226048320465666, 875787902918124708, 36894332593824661521, 1654480523772673528372, 78693266840741507386757
Offset: 1
-
a[n_] := DivisorSum[n, (n/#)^n * (# + 1) &]; Array[a, 20] (* Amiram Eldar, Jul 17 2023 *)
-
a(n) = sumdiv(n, d, (n/d)^n*(d+1));
A292919
Sum of n-th powers of odd divisors of n.
Original entry on oeis.org
1, 1, 28, 1, 3126, 730, 823544, 1, 387440173, 9765626, 285311670612, 531442, 302875106592254, 678223072850, 437893920912786408, 1, 827240261886336764178, 150094635684419611, 1978419655660313589123980, 95367431640626, 5842587018944528395924761632, 81402749386839761113322
Offset: 1
-
f:= proc(n) local t,d;
t:= n/2^padic:-ordp(n,2);
add(d^n, d = numtheory:-divisors(t));
end proc:
map(f, [$1..30]); # Robert Israel, Sep 27 2017
-
Rest[Table[SeriesCoefficient[Sum[(2 k - 1)^n x^(2 k - 1)/(1 - x^(2 k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 22}]]
f[n_] := Plus @@ (Select[Divisors[n], OddQ]^n); Array[f, 22] (* Robert G. Wilson v, Sep 26 2017 *)
-
a(n) = sumdiv(n, d, if (d%2, d^n)); \\ Michel Marcus, Sep 08 2018
A308504
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).
Original entry on oeis.org
1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1
a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
1, 1, 1, 1, 1, ...
5, 9, 17, 33, 65, ...
28, 82, 244, 730, 2188, ...
273, 1057, 4161, 16513, 65793, ...
3126, 15626, 78126, 390626, 1953126, ...
47450, 282252, 1686434, 10097892, 60526250, ...
-
T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
A338685
a(n) = Sum_{d|n} d^n * binomial(d, n/d).
Original entry on oeis.org
1, 8, 81, 1040, 15625, 282123, 5764801, 134610944, 3486804084, 100097656250, 3138428376721, 107025924222976, 3937376385699289, 155582338242342053, 6568408660888671875, 295155786482995691520, 14063084452067724991009, 708240750793407501694308, 37589973457545958193355601
Offset: 1
-
a[n_] := DivisorSum[n, #^n * Binomial[#, n/#] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
-
a(n) = sumdiv(n, d, d^n*binomial(d, n/d));
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, (1+(k*x)^k)^k-1))
A363648
Expansion of Sum_{k>0} (1/(1 - (k*x)^k)^4 - 1).
Original entry on oeis.org
4, 26, 128, 1219, 12556, 195278, 3294292, 67773349, 1550075836, 40097713880, 1141246682808, 35686524105658, 1211500426369572, 44454809534927314, 1751576172678539608, 73789791194939982793, 3308961047545347057848, 157387135278770854655312
Offset: 1
-
a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + 3, 3] &]; Array[a, 20] (* Amiram Eldar, Jul 17 2023 *)
-
a(n) = sumdiv(n, d, (n/d)^n*binomial(d+3, 3));
A308670
a(n) = Sum_{d|n} d^(d*n).
Original entry on oeis.org
1, 17, 19684, 4294967553, 298023223876953126, 10314424798490535546559373642, 256923577521058878088611477224235621321608, 6277101735386680763835789423207666416120802188537744130049
Offset: 1
-
a[n_] := DivisorSum[n, #^(#*n) &]; Array[a, 8] (* Amiram Eldar, May 11 2021 *)
-
{a(n) = sumdiv(n, d, d^(d*n))}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k*x)^k)^(1/k)))))
Comments