cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A026565 a(n) = 6*a(n-2), starting with 1, 3, 9.

Original entry on oeis.org

1, 3, 9, 18, 54, 108, 324, 648, 1944, 3888, 11664, 23328, 69984, 139968, 419904, 839808, 2519424, 5038848, 15116544, 30233088, 90699264, 181398528, 544195584, 1088391168, 3265173504, 6530347008, 19591041024, 39182082048
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else 6*Self(n-2): n in [1..35]]; // G. C. Greubel, Dec 17 2021
    
  • Mathematica
    Table[(1/4)*6^(n/2)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)) - (1/2)*Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Dec 17 2021 *)
  • Sage
    def A026565(n): return ( (3/2)*6^(n/2) if (n%2==0) else 3*6^((n-1)/2) ) - bool(n==0)/2
    [A026565(n) for n in (0..30)] # G. C. Greubel, Dec 17 2021

Formula

a(n) = Sum_{j=0..2*n} A026552(n, j).
G.f.: (1+3*x+3*x^2)/(1-6*x^2). - Ralf Stephan, Feb 03 2004
a(0)=1, a(1)=3; a(n) = 3*a(n-1) if n is even, a(n) = 2*a(n-1) if n is odd. - Vincenzo Librandi, Nov 19 2010
a(n) = (1/4)*6^(n/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) - (1/2)*[n=0]. - G. C. Greubel, Dec 17 2021

Extensions

Better name from Ralf Stephan, Jul 17 2013

A208131 Partial products of A052901.

Original entry on oeis.org

1, 3, 6, 12, 36, 72, 144, 432, 864, 1728, 5184, 10368, 20736, 62208, 124416, 248832, 746496, 1492992, 2985984, 8957952, 17915904, 35831808, 107495424, 214990848, 429981696, 1289945088, 2579890176, 5159780352, 15479341056, 30958682112, 61917364224, 185752092672
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 04 2012

Keywords

Crossrefs

Programs

  • Haskell
    a208131 n = a208131_list !! n
    a208131_list = scanl (*) 1 $ a052901_list
    -- Reinhard Zumkeller, Mar 29 2012
  • Mathematica
    FoldList[Times,1,PadRight[{},30,{3,2,2}]] (* Harvey P. Dale, Mar 19 2013 *)

Formula

a(n+1) = a(n) * A052901(n).
A001222(a(n)) = n.
a(n) = 12^floor(n/3)*(r+1)*(r+2)/2 with r = n mod 3. G.f.: -(6*x^2+3*x+1) / (12*x^3-1). - Alois P. Heinz, Apr 05 2012
Sum_{n>=0} 1/a(n) = 18/11. - Amiram Eldar, Feb 13 2023

A121123 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).

Original entry on oeis.org

1, 3, 12, 63, 342, 1998, 11772, 70308, 420552, 2521368, 15120432, 90710928, 544218912, 3265243488, 19591180992, 117546666048, 705278316672, 4231667380608, 25389994205952, 152339950119168, 914039640248832, 5484237750793728, 32905426141965312, 197432556307596288
Offset: 2

Views

Author

N. J. A. Sloane, Aug 13 2006

Keywords

Programs

  • Maple
    # Exhibit 1
    Hra := proc(r::integer,a::integer,q::integer)
        binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ;
        %*(q-3)^(r-a-1) ;
    end proc:
    Jra := proc(r::integer,a::integer,q::integer)
        binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ;
        %*(q-3)^(r-a-2) ;
    end proc:
    # Exhibit 2, I_m
    A121123 := proc(r::integer)
        local q,a,f ;
        q := 9 ;
        a := 0 ;
        f := 1 +(-1)^(r+a) +(1+(-1)^a) *(1-(-1)^r) *floor((q-3)/2) /2 ;
        Jra(r,a,q)+binomial(2,r-a)+f*Hra(floor(r/2),floor(a/2),q) ;
        %/4 ;
    end proc:
    seq(A121123(n),n=2..30) ; # R. J. Mathar, Aug 01 2019
  • Mathematica
    Join[{1}, LinearRecurrence[{6, 6, -36}, {3, 12, 63}, 23]] (* Jean-François Alcover, Mar 31 2020 *)

Formula

From Colin Barker, Aug 30 2013: (Start)
a(n) = 6*a(n-1)+6*a(n-2)-36*a(n-3) for n>5.
G.f.: x^2 -3*x^3*(-1+2*x+9*x^2) / ( (6*x-1)*(6*x^2-1) ). (End)
a(n) = A026532(n+1)/12 +6^(n-2)/4, n>2. - R. J. Mathar, Aug 01 2019

A203161 (n-1)-st elementary symmetric function of the first n terms of (3,1,2,3,1,2,3,1,2,...).

Original entry on oeis.org

1, 4, 11, 39, 57, 132, 432, 540, 1188, 3780, 4428, 9504, 29808, 33696, 71280, 221616, 244944, 513216, 1586304, 1726272, 3592512, 11057472, 11897280, 24634368, 75582720, 80621568, 166281984, 508923648, 539156736, 1108546560, 3386105856
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Comments

From R. J. Mathar, Oct 01 2016 (Start):
The k-th elementary symmetric functions of the first n terms of 3,1,2,3,1,2.., form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 3
1 4 3
1 6 11 6
1 9 29 39 18
1 10 38 68 57 18
1 12 58 144 193 132 36
1 15 94 318 625 711 432 108
1 16 109 412 943 1336 1143 540 108
1 18 141 630 1767 3222 3815 2826 1188 216
1 21 195 1053 3657 8523 13481 14271 9666 3780 648
This here is the first subdiagonal. The diagonal is a stuttered version of A026532. The 2nd column is A047231 (or A144429). (End)

Examples

			Let esf abbreviate "elementary symmetric function".  Then
0th esf of {3}:  1,
1st esf of {3,1}:  3+1=4,
2nd esf of {3,1,2} is 3*1+3*1+1*2=11.
		

Crossrefs

Programs

  • Mathematica
    f[k_] := 1 + Mod[k + 1, 3]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 33}] (* A203161 *)
  • PARI
    Vec(x*(3*x+1)*(3*x^3+8*x^2+x+1)/(6*x^3-1)^2 + O(x^100)) \\ Colin Barker, Aug 15 2014

Formula

G.f.: x*(3*x+1)*(3*x^3+8*x^2+x+1) / (6*x^3-1)^2. - Colin Barker, Aug 15 2014

A329115 a(n) = floor(A026549(n)/5).

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 43, 86, 259, 518, 1555, 3110, 9331, 18662, 55987, 111974, 335923, 671846, 2015539, 4031078, 12093235, 24186470, 72559411, 145118822, 435356467, 870712934, 2612138803, 5224277606, 15672832819, 31345665638, 94036996915, 188073993830
Offset: 1

Views

Author

Clark Kimberling, Nov 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    s[1] = 1; s[n_] := If[IntegerQ[n/2], 2*s[n - 1], 3*s[n - 1]]
    Table[s[n], {n, 1, 20}] (* A026532 *)
    Table[Floor[s[n]/5], {n, 1, 50}] (* A329115 *)

Formula

a(n+1) = 2*a(n) if n is odd, a(n+1) = 3*a(n)+1 if n is even.
a(n) = f(2^f(n/2) * 3^f((n-1)/2) / 5), where f = floor.
G.f.: (x^2 (1 + 2 x))/((-1 + x) (1 + x) (-1 + 6 x^2)).
a(n) = 7*a(n-2) - 6*a(n-4).

A068179 Product_{i=1..3} (i+x) / Product_{i=1..3} (i-x) = Sum_{n>=0} (a(n)/b(n))*x^n.

Original entry on oeis.org

1, 11, 121, 971, 6721, 43331, 269641, 1648091, 9981841, 60176051, 361921561, 2174145611, 13052763361, 78340331171, 470113403881, 2820895001531, 16926014399281, 101558020876691, 609353931324601, 3656141011383851
Offset: 0

Views

Author

Benoit Cloitre, Mar 12 2002

Keywords

Comments

If n mod 10 == 1, 2, or 4 then a(n)==0 (mod 11). - Bruno Berselli, Aug 26 2011

Crossrefs

Cf. A026532.

Programs

  • Magma
    [5*2^(n+1)+6^(n+1)-5*3^(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 29 2011
    
  • Mathematica
    Table[5*2^(n+1)+6^(n+1)-5*3^(n+1), {n,0,20}] (* G. C. Greubel, Nov 10 2018 *)
    LinearRecurrence[{11,-36,36},{1,11,121},20] (* Harvey P. Dale, Aug 16 2021 *)
  • PARI
    vector(20, n, n--; 5*2^(n+1)+6^(n+1)-5*3^(n+1)) \\ G. C. Greubel, Nov 10 2018
    
  • Python
    for n in range(0,20): print(5*2**(n+1)+6**(n+1)-5*3**(n+1), end=', ') # Stefano Spezia, Nov 12 2018

Formula

b(n) = A026532(2*n-1) for n >= 1.
Lim_{n -> infinity} a(n)/b(n) = 12.
From Yalcin Aktar, Aug 10 2011: (Start)
a(n) = 5*2^(n+1) + 6^(n+1) - 5*3^(n+1).
a(n)/b(n) = 12 - 30/2^n + 20/3^n.
General case: lim_{m-->+oo} a_n(m)/b_n(m) = A002378(n) where
Product_{i=1..d} (x+i)/Product_{i=1..d} (i-x) = Sum_{n>=0} (a_d(n)/b_d(n))*x^n) = ((-1)^d) * (1 + Sum_{j>=1} (Sum_{k=1..d} ((-1)^k/k^j) * binomial(2*k,k) * binomial(d+k,2*k)) * x^j). (End)
G.f.: (1+36*x^2)/((1-2*x)*(1-3*x)*(1-6*x)). - Bruno Berselli, Aug 26 2011
E.g.f.: 10*exp(2*x) - 15*exp(3*x) + 6*exp(6*x). - G. C. Greubel, Nov 10 2018

A103279 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 3, 1, 3, 8, 1, 3, 9, 22, 1, 3, 10, 27, 60, 1, 3, 11, 34, 81, 164, 1, 3, 12, 43, 116, 243, 448, 1, 3, 13, 54, 171, 396, 729, 1224, 1, 3, 14, 67, 252, 683, 1352, 2187, 3344, 1, 3, 15, 82, 365, 1188, 2731, 4616, 6561, 9136, 1, 3, 16, 99, 516, 2019, 5616, 10923, 15760
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1]; Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,1] is equivalent to the recursion a(1) = 1, a(2) = 3, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
1,
3,
N + 8,
N^2 + 4*N + 22,
N^3 + 4*N^2 + 16*N + 60,
N^4 + 4*N^3 + 18*N^2 + 56*N + 164,
N^5 + 4*N^4 + 20*N^3 + 68*N^2 + 188*N + 448,
N^6 + 4*N^5 + 22*N^4 + 80*N^3 + 248*N^2 + 608*N + 1224,
N^7 + 4*N^6 + 24*N^5 + 92*N^4 + 312*N^3 + 864*N^2 + 1920*N + 3344,
N^8 + 4*N^7 + 26*N^6 + 104*N^5 + 380*N^4 + 1152*N^3 + 2928*N^2 + 5952*N + 9136,
etc.

Examples

			Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
		

Crossrefs

Cf. A103280 (for (M^n)[1, 2]), A028859 (for N=0), A000244 (for N=1), A007052 (for N=2), A007583 (for N=3), A083881 (for N=4), A026581 (for N=-1), A026532 (for N=-2), A026568.

Programs

  • PARI
    T11(N, n) = if(n==1,1,if(n==2,3,(N+2)*r1(N,n-1)-(2*N-2)*r1(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T11(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=3, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).

A176812 Expansion of 3*(1+x)/(1-2*x-5*x^2).

Original entry on oeis.org

3, 9, 33, 111, 387, 1329, 4593, 15831, 54627, 188409, 649953, 2241951, 7733667, 26677089, 92022513, 317430471, 1094973507, 3777099369, 13029066273, 44943629391, 155032590147, 534783327249, 1844729605233, 6363375846711
Offset: 0

Views

Author

Roger L. Bagula, Apr 26 2010

Keywords

Comments

Binomial transform of A026532 after dropping A026532(0). [From R. J. Mathar, Apr 27 2010]

Programs

  • Mathematica
    a[n_] = 2^n*(((3 + Sqrt[ 6])/2)*((1 + Sqrt[6])/2)^n + ((3 - Sqrt[6])/2)*((1 - Sqrt[6])/2)^n); Table[FullSimplify[a[n]], {n, 0, 30}]
    CoefficientList[Series[(-3(1+x))/(5x^2+2x-1),{x,0,40}],x]  (* Harvey P. Dale, Feb 24 2011 *)

Formula

Binet form: a(n)=2^n*(((3 + Sqrt[6])/2)*((1 + Sqrt[6])/2)^n + ((3 - Sqrt[6])/2)*((1 - Sqrt[6])/2)^n) = 3*A180168(n).

A068154 Numerators of coefficients in power series for (Product_{i=1..5} (x+i)) / (Product_{i=1..5} (i-x)) = Sum_{n>=0} a(n)/b(n)*x^n.

Original entry on oeis.org

1, 137, 18769, 1799603, 140815861, 9800649707, 638003187109, 40003144104683, 2456948367146821, 149230625474121227, 9010618306714845349, 542390253445959003563, 32597040868332220933381, 1957452401279697344559947, 117496474687502028535109989
Offset: 0

Views

Author

Benoit Cloitre, Mar 12 2002

Keywords

Formula

If n > 0, denominators b(n) = 10^n*A026532(2n-1).
Lim_{n->infinity} a(n)/b(n) = 30.

Extensions

Offset corrected and more terms from Sean A. Irvine, Jan 30 2024

A137457 Consider a row of standard dice as a counter. This sequence enumerates the number of changes (one face rotated over an edge to an adjacent face) from n-1 to n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Apr 18 2008

Keywords

Comments

Most counters 'zero' out at '0' but the dice 'zero' out at '1' which is the initial state. So to increment 1 -> 2 requires 1 move, 2 -> 3 requires 1 move, 3 -> 4 requires 2 moves, 4 -> 5 requires 1 move, 5 -> 6 requires 1 move and 6 -> 0 requires 2 moves.
First occurrence of k (A026532): 1, 3, 6, 18, 36, 108, 216, 648, 1296, 3888, ....

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = IntegerDigits[n - 1, 6] + 1, b = IntegerDigits[n, 6] + 1, c}, If[Length@b > Length@a, a = Prepend[a, 1]]; c = Transpose[{a, b}] /. {{d_, d_} -> 0, {1, 2} -> 1, {2, 3} -> 1, {3, 4} -> 2, {4, 5} -> 1, {5, 6} -> 1, {6, 1} -> 2}; Plus @@ c]; Array[f, 105]
Previous Showing 11-20 of 20 results.