A038125
a(n) = Sum_{k=0..n} (k-n)^k.
Original entry on oeis.org
1, 1, 0, 0, 1, -1, 0, 6, -19, 29, 48, -524, 2057, -3901, -9632, 129034, -664363, 1837905, 2388688, -67004696, 478198545, -1994889945, 1669470784, 56929813934, -615188040195, 3794477505573, -12028579019536, -50780206473220
Offset: 0
Jim Ferry (jferry(AT)alum.mit.edu)
0^0 = 1,
1^0 - 0^1 = 1,
2^0 - 1^1 + 0^2 = 0,
3^0 - 2^1 + 1^2 - 0^3 = 0,
...
-
Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ Seiichi Manyama, Dec 02 2021
-
a(n) = sum(k=0, n, (k-n)^k); \\ Michel Marcus, Dec 03 2021
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 12, 27, 64, 163, 441, 1268, 3855, 12344, 41464, 145653, 533736, 2036149, 8071785, 33192790, 141351715, 622384730, 2829417276, 13263528351, 64038928728, 318121600695, 1624347614737, 8517247764136, 45822087138879
Offset: 0
-
a(n) = sum(k=0, n\2, k^(n-2*k)); \\ Seiichi Manyama, Apr 09 2022
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x))) \\ Seiichi Manyama, Apr 09 2022
A234568
Sum_{k=0..n} (n-k)^(2*k).
Original entry on oeis.org
1, 1, 2, 6, 27, 163, 1268, 12344, 145653, 2036149, 33192790, 622384730, 13263528351, 318121600695, 8517247764136, 252725694989612, 8258153081400857, 295515712276222953, 11523986940937975402, 487562536078882116718, 22291094729329088403299, 1097336766599161926448779
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 163*x^5 + 1268*x^6 +...
O.g.f.: A(x) = 1 + x/(1-x) + x^2/(1-4*x) + x^3/(1-9*x) + x^4/(1-16*x) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 27*x^4/4! + 163*x^5/5! +...
where the e.g.f. is a series involving iterated integration:
E(x) = 1 + Integral exp(x) dx + Integral^2 exp(4*x) dx^2 + Integral^3 exp(9*x) dx^3 + Integral^4 exp(16*x) dx^4 +...
-
Flatten[{1,Table[Sum[(n-k)^(2*k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 23 2014 *)
-
a(n)=sum(k=0, n, (n-k)^(2*k))
for(n=0, 20, print1(a(n), ", "))
-
/* From o.g.f. Sum_{n>=0} x^n/(1-n^2*x): */
{a(n)=polcoeff(sum(m=0, n, x^m/(1-m^2*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From e.g.f. involving iterated integration: */
INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G
a(n)=my(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,exp(k^2*x+x*O(x^n))));n!*polcoeff(A,n)
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Dec 28 2013
A105795
Shallow diagonal sums of the triangle k!*Stirling2(n,k): a(n) = Sum_{k=0..floor(n/2)} T(n-k,k) where T is A019538.
Original entry on oeis.org
1, 0, 1, 1, 3, 7, 21, 67, 237, 907, 3741, 16507, 77517, 385627, 2024301, 11174587, 64673997, 391392667, 2470864941, 16237279867, 110858862477, 784987938907, 5755734591981, 43636725010747, 341615028340557, 2758165832945947, 22940755633301421, 196354180631212027
Offset: 0
a(8) = 1!*Stirling2(7,1) + 2!*Stirling2(6,2) + 3!*Stirling2(5,3) + 4!*Stirling2(4,4) = 1 + 62 + 150 + 24 = 237. - _Peter Bala_, Jul 09 2014
-
a:= n-> add(Stirling2(n-k, k)*k!, k=0..n/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 09 2014
-
Table[Sum[StirlingS2[n-k, k]*k!, {k,0,n/2}],{n,0,20}] (* Vaclav Kotesovec, Jul 16 2014 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Length[Join@@Permutations/@Select[sps[Range[n-k]],Length[#]==k&]],{k,0,n}],{n,0,10}] (* Gus Wiseman, Jan 08 2019 *)
-
/* From Paul Barry's formula: */
{a(n)=sum(k=0,floor(n/2), sum(i=0,k,(-1)^i*binomial(k, i)*(k-i)^(n-k)))} \\ Paul D. Hanna, Dec 28 2013
for(n=0,30,print1(a(n),", "))
-
/* From e.g.f. series involving iterated integration: */
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))-1)^k ));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
A349880
Expansion of Sum_{k>=0} x^k/(1 - k^3 * x).
Original entry on oeis.org
1, 1, 2, 10, 93, 1307, 28002, 842196, 33388393, 1717595949, 111931584098, 8979468552886, 872315432217509, 101425775048588759, 13924209725224120770, 2229705716369149960592, 412760812611799202662609, 87644186710319273062637625, 21180850892383599137766296770
Offset: 0
-
a(n, s=0, t=3) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^3*x)))
A062810
a(n) = Sum_{i=1..n} i^(n - i) + (n - i)^i.
Original entry on oeis.org
1, 3, 7, 17, 45, 131, 419, 1465, 5561, 22755, 99727, 465537, 2303829, 12037571, 66174411, 381560425, 2301307841, 14483421859, 94909491607, 646309392369, 4565559980989, 33401808977411, 252713264780595, 1974606909857945
Offset: 1
-
Sum[i^(n - i) + (n - i)^i, {i, 1, n}]
-
a(n) = sum(i=1, n, i^(n-i) + (n-i)^i); \\ Michel Marcus, Mar 24 2019
A103439
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} (i-j+1)^j.
Original entry on oeis.org
0, 1, 3, 7, 16, 39, 105, 315, 1048, 3829, 15207, 65071, 297840, 1449755, 7468541, 40555747, 231335960, 1381989881, 8623700811, 56078446615, 379233142800, 2662013133295, 19362917622001, 145719550012299, 1133023004941272, 9090156910550109, 75161929739797519
Offset: 0
-
[0] cat [(&+[ (&+[ (k-j+1)^j : j in [0..k]]) : k in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jun 15 2021
-
b:= proc(i) option remember; add((i-j+1)^j, j=0..i) end:
a:= proc(n) option remember; add(b(i), i=0..n-1) end:
seq(a(n), n=0..30); # Alois P. Heinz, Dec 02 2019
-
Join[{0},Table[Sum[Sum[(i-j+1)^j,{j,0,i}],{i,0,n}],{n,0,30}]] (* Harvey P. Dale, Dec 03 2018 *)
-
a(n) = sum(i=0, n-1, sum(j=0, i, (i-j+1)^j)); \\ Michel Marcus, Jun 15 2021
-
[sum(sum((k-j+1)^j for j in (0..k)) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
A352944
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 16, 31, 61, 125, 266, 579, 1305, 3009, 7120, 17255, 42697, 108005, 278466, 731883, 1958589, 5331625, 14758720, 41501135, 118507301, 343405709, 1009313322, 3007557523, 9081204849, 27775308049, 86014412384, 269603741111, 855012176081
Offset: 0
-
Join[{1},Table[Sum[(n-2k)^k,{k,0,Floor[n/2]}],{n,40}]] (* Harvey P. Dale, Dec 12 2022 *)
-
a(n) = sum(k=0, n\2, (n-2*k)^k);
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)))
A104879
Row sums of a sum-of-powers triangle.
Original entry on oeis.org
1, 2, 4, 8, 17, 40, 106, 316, 1049, 3830, 15208, 65072, 297841, 1449756, 7468542, 40555748, 231335961, 1381989882, 8623700812, 56078446616, 379233142801, 2662013133296, 19362917622002, 145719550012300, 1133023004941273, 9090156910550110, 75161929739797520
Offset: 0
A327712
Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length).
Original entry on oeis.org
1, 1, 1, 3, 3, 9, 29, 57, 135, 615, 2635, 6273, 25151, 82623, 525281, 2941047, 9100709, 38766777, 205155713, 902705793, 7714938567, 52987356783, 204844103977, 1042657233471, 5520661314689, 38159472253821, 211945677298567, 2404720648663335, 19773733727088813
Offset: 0
-
with(combinat):
a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0), p=map(h->
permute(h)[], select(l-> nops(l)=nops({l[]}), partition(n)))):
seq(a(n), n=0..28);
# second Maple program:
a:= proc(m) option remember; local b; b:=
proc(n, i, j) option remember; `if`(i*(i+1)/2>=n,
`if`(n=0, (m-j)!*j!, b(n, i-1, j)+
b(n-i, min(n-i, i-1), j+1)/(i-1)!), 0)
end: b(m$2, 0):
end:
seq(a(n), n=0..28);
-
a[m_] := a[m] = Module[{b}, b[n_, i_, j_] := b[n, i, j] = If[i(i + 1)/2 >= n, If[n == 0, (m - j)! j!, b[n, i - 1, j] + b[n - i, Min[n - i, i - 1], j + 1]/(i - 1)!], 0]; b[m, m, 0]];
a /@ Range[0, 28] (* Jean-François Alcover, May 10 2020, after 2nd Maple program *)
Comments