cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A053293 Number of nonsingular n X n matrices over GF(7).

Original entry on oeis.org

1, 6, 2016, 33784128, 27811094169600, 1122211189922928537600, 2218959336124989671614429593600, 214992513152176999576908105619651923148800, 1020690003311610463765638355505358381593396977336320000, 237443634207909205360438080389756681126654524500073656592021585920000
Offset: 0

Views

Author

Stephen G Penrice, Mar 04 2000

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [&*[(7^n - 7^k): k in [0..n-1]]: n in [1..7]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[7^n - 7^k, {k, 0, n-1}], {n, 0, 10}] (* Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 7^n - 7^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = (7^n - 1)*(7^n - 7)*...*(7^n - 7^(n-1)).
a(n) = A109493(n)*A027875(n). - Bruno Berselli, Jan 30 2013
a(n) ~ c * 7^(n^2), where c = A132035. - Amiram Eldar, Jul 06 2025

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A132035 Decimal expansion of Product_{k>0} (1-1/7^k).

Original entry on oeis.org

8, 3, 6, 7, 9, 5, 4, 0, 7, 0, 8, 9, 0, 3, 7, 8, 7, 1, 0, 2, 6, 7, 2, 9, 7, 9, 8, 1, 4, 6, 1, 3, 6, 2, 4, 1, 3, 5, 2, 4, 3, 6, 4, 3, 5, 8, 7, 6, 7, 1, 6, 5, 1, 9, 9, 6, 4, 1, 1, 5, 1, 0, 1, 7, 7, 0, 0, 9, 1, 6, 0, 1, 2, 6, 5, 4, 2, 7, 6, 0, 5, 8, 7, 8, 7, 5, 5, 5, 4, 2, 8, 4, 9, 0, 5, 1, 2, 0, 2, 1, 7, 5, 3
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.8367954070890378710...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/7^k, {k, 1, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/7], 10, 100][[1]] (* Amiram Eldar, May 09 2023 *)
  • PARI
    prodinf(k=1, 1 - 1/(7^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*7^n)) = exp(-Sum_{n>0} A000203(n)/(n*7^n)).
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(7)) * exp(log(7)/24 - Pi^2/(6*log(7))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(7))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027875(n). (End)

A377484 a(n) = Product_{d|n, d>1} (d - 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 6, 21, 16, 36, 10, 330, 12, 78, 112, 315, 16, 1360, 18, 2052, 240, 210, 22, 53130, 96, 300, 416, 6318, 28, 146160, 30, 9765, 640, 528, 816, 1570800, 36, 666, 912, 560196, 40, 639600, 42, 27090, 39424, 990, 46, 37456650, 288, 42336, 1600, 45900, 52, 1874080, 2160
Offset: 1

Views

Author

Ridouane Oudra, Oct 29 2024

Keywords

Examples

			a(12) = (2-1)*(3-1)*(4-1)*(6-1)*(12-1) = 1*2*3*5*11 = 330.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(mul(d-1, d in divisors(n) minus {1}), n=1..80);
  • Mathematica
    a[n_] := Times @@ (Rest@ Divisors[n] - 1); Array[a, 60] (* Amiram Eldar, Nov 01 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=2, #d, d[k]-1); \\ Michel Marcus, Oct 30 2024

Formula

a(n) = Product_{k=2..A000005(n)} (A027750(n,k) - 1).
a(p^n) = Product_{k=1..n} (p^k - 1), where p is prime, and n an integer.
a(2^n) = A005329(n).
a(3^n) = A027871(n).
a(5^n) = A027872(n).
a(7^n) = A027875(n).
a(11^n) = A027879(n).
From Amiram Eldar, Nov 02 2024: (Start)
a(n) = n-1 if and only if n is in A175787 (i.e., n = 4 or n is prime).
a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079). (End)

A028692 23-factorial numbers.

Original entry on oeis.org

1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (23^k-1).
a(n) ~ c * 23^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/23^k) = 0.954631535623... . (End)

A028693 24-factorial numbers.

Original entry on oeis.org

1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (24^k-1).
a(n) ~ c * 24^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/24^k) = 0.956597348026... . (End)

A028694 25-factorial numbers.

Original entry on oeis.org

1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (25^k-1).
a(n) ~ c * 25^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/25^k) = 0.958400102563... . (End)

A263394 a(n) = Product_{i=1..n} (3^i - 2^i).

Original entry on oeis.org

1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Comments

Generally, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred up to and including the n-th iteration. Here, j=3 and k=2, so p=(2/3)^n and r = 1-a(n)/A047656(n+1). The limiting ratio of r ~ 0.9307279.

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A269576 (j=4, k=3), A269661 (j=5, k=4).

Programs

Formula

a(n) = Product_{i=1..n} A001047(i).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(2/3) = 0.0692720728018644... . - Vaclav Kotesovec, Oct 10 2016

A269576 a(n) = Product_{i=1..n} (4^i - 3^i).

Original entry on oeis.org

1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Comments

In general, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred at or before the n-th iteration. Here j=4 and k=3, so p=(3/4)^n and r = 1-a(n)/A053763(n+1). The limiting ratio of r is ~ 0.9844550.

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A263394 (j=3, k=2), A269661 (j=5, k=4).

Programs

  • Maple
    seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
  • Mathematica
    Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
    FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = Product_{i=1..n} A005061(i).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(3/4) = 0.015545038845451847... . - Vaclav Kotesovec, Oct 10 2016
a(n+3)/a(n+2) - 7 * a(n+2)/a(n+1) + 12 * a(n+1)/a(n) = 0. - Robert Israel, Jun 01 2023

A269661 a(n) = Product_{i=1..n} (5^i - 4^i).

Original entry on oeis.org

1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7), A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A263394 (j=3, k=2), A269576 (j=4, k=3).

Programs

  • Magma
    [&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
    
  • Mathematica
    Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
    Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
    FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
  • PARI
    a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = Product_{i=1..n} A005060(i).
a(n) = 5^(binomial(n+1,2))*(4/5;4/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Mar 05 2016
a(n) ~ c * 5^(n*(n+1)/2), where c = QPochhammer(4/5) = 0.00336800585242312126... . - Vaclav Kotesovec, Oct 10 2016

A320354 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Examples

			Square array begins:
  1,     1,        1,          1,            1,             1,  ...
  0,     1,        2,          3,            4,             5,  ...
  0,     3,       16,         45,           96,           175,  ...
  0,    21,      416,       2835,        11904,         37625,  ...
  0,   315,    33280,     722925,      7428096,      48724375,  ...
  0,  9765,  8053760,  739552275,  23205371904,  378832015625,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten

Formula

G.f. of column k: Sum_{i>=0} k^(i*(i+1)/2)*x^i / Product_{j=0..i} (1 + k^j*x).
For asymptotics of column k see comment from Vaclav Kotesovec in A027880.
Previous Showing 11-20 of 20 results.