A090665
Triangle read by rows: T(n,k) = number of preferential arrangements of n things where the first object has rank k.
Original entry on oeis.org
1, 2, 1, 6, 5, 2, 26, 25, 18, 6, 150, 149, 134, 84, 24, 1082, 1081, 1050, 870, 480, 120, 9366, 9365, 9302, 8700, 6600, 3240, 720, 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040, 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320
Offset: 1
Eugene McDonnell (eemcd(AT)mac.com), Dec 16 2003
Triangle starts:
01: 1;
02: 2, 1;
03: 6, 5, 2;
04: 26, 25, 18, 6;
05: 150, 149, 134, 84, 24;
06: 1082, 1081, 1050, 870, 480, 120;
07: 9366, 9365, 9302, 8700, 6600, 3240, 720;
08: 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040;
09: 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320;
10: 14174522, 14174521, 14174010, 14155350, 13950720, 12930120, 10190880, 5957280, 2177280, 362880;
...
-
T = {n, k} |-> 2*Sum[i!*StirlingS2[n-1, i], {i, k, n-1}] + (k-1)i!*StirlingS2[n-1, k-1] (* Vincent Jackson, May 01 2023 *)
A094485
T(n, k) = Stirling1(n+1, k) - Stirling1(n, k-1), for 1 <= k <= n. Triangle read by rows.
Original entry on oeis.org
-1, 2, -2, -6, 9, -3, 24, -44, 24, -4, -120, 250, -175, 50, -5, 720, -1644, 1350, -510, 90, -6, -5040, 12348, -11368, 5145, -1225, 147, -7, 40320, -104544, 105056, -54152, 15680, -2576, 224, -8, -362880, 986256, -1063116, 605556, -202041, 40824, -4914, 324, -9, 3628800, -10265760, 11727000, -7236800
Offset: 1
Triangle starts:
[n\k 1 2 3 4 5 6 7 8]
[1] -1;
[2] 2, -2;
[3] -6, 9, -3;
[4] 24, -44, 24, -4;
[5] -120, 250, -175, 50, -5;
[6] 720, -1644, 1350, -510, 90, -6;
[7] -5040, 12348, -11368, 5145, -1225, 147, -7;
[8] 40320, -104544, 105056, -54152, 15680, -2576, 224, -8;
-
T := (n, k) -> Stirling1(n+1, k) - Stirling1(n, k-1);
seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, May 26 2020
-
Table[StirlingS1[n+1,k]-StirlingS1[n,k-1],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 25 2024 *)
A125166
Triangle R(n,k), companion to A125165, left column n^3.
Original entry on oeis.org
1, 8, 1, 27, 9, 1, 64, 36, 10, 1, 125, 100, 46, 11, 1, 216, 225, 146, 57, 12, 1, 343, 441, 371, 203, 69, 13, 1, 512, 784, 812, 574, 272, 82, 14, 1, 729, 1296, 1596, 1386, 846, 354, 96, 15, 1, 1000, 2025, 2892, 2982, 2232, 1200, 450, 111, 16, 1
Offset: 0
With other offset (k >= 1) from first formula: R(5,3) = 146 = R(4,3) + R(4,2) = 46 + 100.
The Riordan triangle R begins:
n\k| 0 1 2 3 4 5 6 7 8 9
--------------------------------------------------
0 | 1
1 | 8 1
2 | 27 9 1
3 | 64 36 10 1
4 | 125 100 46 11 1
5 | 216 225 146 57 12 1
6 | 343 441 371 203 69 13 1
7 | 512 784 812 574 272 82 14 1
8 | 729 1296 1596 1386 846 354 96 15 1
9 | 1000 2025 2892 2982 2232 1200 450 111 16 1
... refomatted and extended by _Wolfdieter Lang_, Mar 25 2025.
-
A125166[n_, k_] := A125166[n, k] = Switch[k, 0, (n + 1)^3, n, 1, _, A125166[n - 1, k - 1] + A125166[n - 1, k]];
Table[A125166[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 08 2025 *)
-
y = polygen(QQ, 'y')
x = y.parent()[['x']].gen()
gf = (1 + 4*x + x^2)/((x - 1)^3*(y*x + x - 1))
[list(u) for u in list(gf.O(11))] # Peter Luschny, Apr 02 2025
A142071
Expansion of the exponential generating function 1 - log(1 - x*(exp(z) - 1)), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 7, 12, 6, 0, 1, 15, 50, 60, 24, 0, 1, 31, 180, 390, 360, 120, 0, 1, 63, 602, 2100, 3360, 2520, 720, 0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 0, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 0, 1, 511, 18660
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 7, 12, 6;
0, 1, 15, 50, 60, 24;
0, 1, 31, 180, 390, 360, 120;
0, 1, 63, 602, 2100, 3360, 2520, 720;
0, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040;
...
-
CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
A142071row := proc(n) 1 - log(1 - x*(exp(z) - 1)):
series(%, z, 12): CL(n!*coeff(%, z, n), x) end:
for n from 0 by 1 to 7 do A142071row(n) od;
# Alternative:
A142071Row := proc(n) if n=0 then [1] else
CL(convert(series(polylog(-n+1, z/(1+z)), z, n*2), polynom), z) fi end:
seq(A142071Row(n), n=0..6); # Peter Luschny, Sep 06 2018
-
T[n_, k_] := If[k==0, Floor[1/(n + 1)], (k - 1)!*StirlingS2[n, k]]; Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Jan 06 2024 *)
Edited, T(0,0) = 1 prepended and new name by
Peter Luschny, Sep 06 2018
A176276
Worpitzky(n, k)*Harmonic(k), triangle read by rows.
Original entry on oeis.org
0, 0, 1, 0, 3, 3, 0, 7, 18, 11, 0, 15, 75, 110, 50, 0, 31, 270, 715, 750, 274, 0, 63, 903, 3850, 7000, 5754, 1764, 0, 127, 2898, 18711, 52500, 72884, 49392, 13068, 0, 255, 9075, 85470, 347550, 725004, 814968, 470448, 109584, 0, 511, 27990, 375155, 2126250, 6254598, 10372320, 9801000, 4931280, 1026576
Offset: 0
Triangle begins as:
0;
0, 1;
0, 3, 3;
0, 7, 18, 11;
0, 15, 75, 110, 50;
0, 31, 270, 715, 750, 274;
-
Flat(List([0..10], n-> List([0..n], k-> AbsInt(Stirling1(k+1, 2) * Stirling2(n+1, k+1)) ))); # G. C. Greubel, Nov 24 2019
-
[Abs(StirlingFirst(k+1, 2)*StirlingSecond(n+1, k+1)): k in [0..n], n in [0..10]];
-
T176276 := proc(n, k) local W, H;
W := proc(n, k) stirling2(n+1, k+1)*k! end:
H := proc(n) local i; add(1/i, i=1..n) end: # H(0) = 0 (empty sum convention)
W(n, k)*H(k) end:
-
T[n_, k_]:= StirlingS2[n+1, k+1]*k!*HarmonicNumber[k]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
T(n,k) = k!*stirling(n+1,k+1,2)*sum(j=1,k,1/j); \\ G. C. Greubel, Nov 24 2019
-
[[factorial(k)*stirling_number1(n+1,k+1)*harmonic_number(k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
A176277
Sum over the odd entries of the rows in the triangle Worpitzky(n, k)*Harmonic(k) (A176276).
Original entry on oeis.org
0, 1, 3, 18, 125, 1020, 9667, 104790, 1281177, 17457840, 262493231, 4318429962, 77178551749, 1489209086820, 30859393432155, 683549418431934, 16118484827641841, 403156528379483160, 10661349675027656839
Offset: 0
Let W(n, k) be the Worpitzky numbers and H(n) the harmonic numbers.
a(3) = W(3,1)H(1) + W(3,3)H(3) = 7*1 + 6*(11/6) = 18.
-
a:= function(n)
if n<2 then return n;
else return Sum([0..n], k-> AbsInt(Stirling1(k+1, 2) * Stirling2(n+1, k+1)))/2;
fi; end;
List([0..25], n-> a(n)); # G. C. Greubel, Nov 24 2019
-
[n lt 2 select n else (&+[Abs(StirlingFirst(k+1, 2)*StirlingSecond(n+1, k+1)): k in [0..n]])/2: n in [0..25]];
-
A176277 := proc(n) local k; add((k mod 2)*T176276(n, k), k=0..n) end;
-
a[1] = 1; a[n_]:= Sum[ StirlingS2[n+1, k+1]*k!*HarmonicNumber[k], {k,0,n,2}]; Table[a[n], {n,0,20}] (* Jean-François Alcover, Jul 30 2013 *)
-
a(n) = if(n<2, n, sum(k=0,n, k!*stirling(n+1,k+1,2)*sum(j=1,k,1/j)) ); \\ G. C. Greubel, Nov 24 2019
-
def a(n):
if (n<2): return n
else: return sum( factorial(k)*stirling_number1(n+1,k+1)*harmonic_number(k) for k in (0..n))/2
[a(n) for n in (0..25)] # G. C. Greubel, Nov 24 2019
A188881
Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 6, 11, 12, 6, 24, 50, 70, 60, 24, 120, 274, 450, 510, 360, 120, 720, 1764, 3248, 4410, 4200, 2520, 720, 5040, 13068, 26264, 40614, 47040, 38640, 20160, 5040, 40320, 109584, 236248, 403704, 538776, 544320, 393120, 181440, 40320
Offset: 1
Triangle begins:
1
1 1
2 3 2
6 11 12 6
24 50 70 60 24
120 274 450 510 360 120
...
-
S:=proc(n,k)global s:if(n=0 and k=0)then s[0,0]:=1:elif(n=0 or k=0)then s[n,k]:=0:elif(not type(s[n,k],integer))then s[n,k]:=(n-1)*S(n-1,k)+S(n-1,k-1):fi:return s[n,k]:end:
T:=proc(n,k)return (k-1)!*S(n,k);end:
for n from 1 to 6 do for k from 1 to n do print(T(n,k)):od:od: # Nathaniel Johnston, Apr 15 2011
# With offset n = 0, k = 0:
A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)):
seq(seq(A188881(n,k), k=0..n), n=0..8); # Peter Luschny, Oct 19 2017
# Alternative:
gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18):
toeff := n -> n!*expand(coeff(ser, t, n)):
seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Jul 10 2020
-
Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
-
T(n,k):=(k-1)!*sum(stirling2(i,k)*(-1)^(n-i)*stirling1(n,i),i,0,k); /* Vladimir Kruchinin, Apr 17 2015 */
-
{T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* Michael Somos, May 10 2017 */
-
{T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* Michael Somos, May 10 2017 */
A294032
Triangle read by rows, T(n, k) = Pochhammer(3, k)*Stirling2(3 + n, 3 + k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301, 1050, 1680, 1260, 360, 966, 5103, 12600, 15960, 10080, 2520, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Offset: 0
Triangle starts:
[0] 1
[1] 6, 3
[2] 25, 30, 12
[3] 90, 195, 180, 60
[4] 301, 1050, 1680, 1260, 360
[5] 966, 5103, 12600, 15960, 10080, 2520
[6] 3025, 23310, 83412, 158760, 166320, 90720, 20160
[7] 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
-
A294032 := (n, k) -> pochhammer(3, k)*Stirling2(n + 3, k + 3):
seq(seq(A294032(n, k), k=0..n), n=0..7);
T := (n, k) -> A293617(3, n, k): seq(seq(T(n, k), k=0..n), n=0..7);
-
Table[Pochhammer[3, k] StirlingS2[3 + n, 3 + k], {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 22 2017 *)
-
for(n=0,10, for(k=0,n, print1((k+2)!*stirling(n+3,k+3,2)/2, ", "))) \\ G. C. Greubel, Nov 19 2017
A298668
Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0
T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3;
0, 1, 7, 2;
0, 1, 15, 12;
0, 1, 31, 50, 6;
0, 1, 63, 180, 60;
0, 1, 127, 602, 390, 24;
0, 1, 255, 1932, 2100, 360;
0, 1, 511, 6050, 10206, 3360, 120;
0, 1, 1023, 18660, 46620, 25200, 2520;
...
Columns k=0-11 give (offsets may differ):
A000007,
A057427,
A168604,
A028243,
A028244,
A028245,
A032180,
A228909,
A228910,
A228911,
A228912,
A228913.
Row sums give
A229046(n-1) for n>0.
-
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..14);
# second Maple program:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
# third Maple program:
T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
`if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
-
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)
A054255
Triangle T(n,k) (n >= 1, 0<=k<=n) giving number of preferential arrangements of n things beginning with k (transposed, then read by rows).
Original entry on oeis.org
1, 1, 2, 2, 5, 6, 6, 18, 25, 26, 24, 84, 134, 149, 150, 120, 480, 870, 1050, 1081, 1082, 720, 3240, 6600, 8700, 9302, 9365, 9366, 5040, 25200, 57120, 82320, 92526, 94458, 94585, 94586, 40320, 221760, 554400, 871920, 1038744, 1085364, 1091414, 1091669, 1091670
Offset: 1
Eugene McDonnell (Eemcd(AT)aol.com), May 05 2000
1;
1, 2;
2, 5, 6;
6, 18, 25, 26;
24, 84, 134, 149, 150;
...
Cf.
A090665 (triangle with rows reversed).
Comments