cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A052265 Triangle giving T(n,r) = number of equivalence classes of Boolean functions of n variables and range r=0..2^n under action of symmetric group.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 4, 3, 1, 1, 4, 9, 16, 20, 16, 9, 4, 1, 1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1, 1, 6, 28, 134, 625, 2674, 10195, 34230, 100577, 258092, 579208, 1140090, 1974438, 3016994, 4077077, 4881092, 5182326, 4881092
Offset: 0

Views

Author

Vladeta Jovovic, Feb 04 2000

Keywords

Comments

Also, T(n,k) is the number of unlabeled n-vertex hypergraphs (or set systems) with k hyperedges. - Pontus von Brömssen, Apr 10 2024

Examples

			Triangle begins:
   1, 1;
   1, 2, 1;
   1, 3, 4, 3, 1;
   1, 4, 9, 16, 20, 16, 9, 4, 1;
   1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1;
   ...
		

References

  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147.

Crossrefs

Row sums give A003180.
Cf. A028657, A371830 (empty hyperedge not permitted).

Programs

  • Mathematica
    Table[rl = Table[Tuples[{0, 1}, nn][[i]] -> i, {i, 1, 2^nn}];
     f[permutation_] := PermutationCycles[Map[Permute[#, permutation] &, Tuples[{0, 1}, nn]] /. rl];CoefficientList[(Map[CycleIndexPolynomial[#, Array[Subscript[x, ##] &, 2^nn],2^nn] &, Map[f, Permutations[Range[nn]]]] // Total)/nn! /.
    Table[Subscript[x, i] -> 1 + x^i, {i, 1, nn!}], x], {nn, 0, 8}] (* Geoffrey Critzer, Jun 22 2021 *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); prod(i=1, #v, my(t=v[i]); (1+x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
    Row(n)={my(s=0); forpart(q=n, s+=permcount(q)*Fix(q,x)); Vecrev(s/n!)}
    { for(n=0, 4, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020

Formula

T(n,k) = A371830(n,k-1) + A371830(n,k) (with A371830(n,k) = 0 if k < 0 or k >= 2^n). - Pontus von Brömssen, Apr 10 2024

A055609 Number of 3 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 5, 17, 42, 91, 180, 328, 565, 930, 1470, 2248, 3344, 4849, 6881, 9579, 13104, 17649, 23442, 30736, 39833, 51074, 64842, 81574, 101766, 125959, 154771, 188883, 229044, 276085, 330926, 394558, 468083, 552696, 649692, 760482, 886602, 1029691, 1191539, 1374065, 1579326
Offset: 1

Views

Author

Vladeta Jovovic, Jun 03 2000

Keywords

Crossrefs

Column k=3 of A056152.

Programs

Formula

G.f.: x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^3).

Extensions

Terms a(37) and beyond from Andrew Howroyd, Mar 25 2020

A052264 Number of 5 X n binary matrices up to row and column permutations.

Original entry on oeis.org

1, 6, 34, 190, 1053, 5624, 28576, 136758, 613894, 2583164, 10208743, 38013716, 133872584, 447620002, 1426354541, 4346885204, 12710830673, 35768703586, 97125981825, 255111287298, 649598148384, 1606754306778, 3867515638005, 9074220508038, 20784247213232
Offset: 0

Views

Author

Vladeta Jovovic, Feb 04 2000

Keywords

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

Formula

G.f.: (x^68 - 2*x^67 + 10*x^66 + 32*x^65 + 175*x^64 + 794*x^63 + 3441*x^62 + 13186*x^61 + 46027*x^60 + 146118*x^59 + 427347*x^58 + 1155432*x^57 + 2912873*x^56 + 6875608*x^55 + 15281029*x^54 + 32094658*x^53 + 63945531*x^52 + 121210914*x^51 + 219194198*x^50 + 378998758*x^49 + 627863648*x^48 + 998282344*x^47 + 1525746624*x^46 + 2244502676*x^45 + 3181886869*x^44 + 4351201210*x^43 + 5744918381*x^42 + 7328807372*x^41 + 9039504349*x^40 + 10785767638*x^39 + 12455264802*x^38 + 13925287384*x^37 + 15077477135*x^36 + 15812782150*x^35 + 16065602576*x^34 + 15812782150*x^33 + 15077477135*x^32 + 13925287384*x^31 + 12455264802*x^30 + 10785767638*x^29 + 9039504349*x^28 + 7328807372*x^27 + 5744918381*x^26 + 4351201210*x^25 + 3181886869*x^24 + 2244502676*x^23 + 1525746624*x^22 + 998282344*x^21 + 627863648*x^20 + 378998758*x^19 + 219194198*x^18 + 121210914*x^17 + 63945531*x^16 + 32094658*x^15 + 15281029*x^14 + 6875608*x^13 + 2912873*x^12 + 1155432*x^11 + 427347*x^10 + 146118*x^9 + 46027*x^8 + 13186*x^7 + 3441*x^6 + 794*x^5 + 175*x^4 + 32*x^3 + 10*x^2 - 2*x + 1)/((x^6 - 1)^2*(x^4 + x^3 + x^2 + x + 1)^6*(x^3 - x^2 + x - 1)^6 * (x^2 + x + 1)^6*(x + 1)^10*(x - 1)^24).

Extensions

Name clarified by Ching Pong Siu, Aug 30 2022

A055066 Number of 7-covers of an unlabeled n-set.

Original entry on oeis.org

1, 7, 62, 664, 8609, 127415, 2004975, 31500927, 474504448, 6708348262, 88249739792, 1078567590128, 12269901302433, 130370516668917, 1298891291366245, 12182760243381355, 107979270564656625, 907568508195185203, 7256984238345563764, 55365443728411530716, 404091280028746802188
Offset: 0

Views

Author

Vladeta Jovovic, Jun 12 2000

Keywords

Comments

Number of 7 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

Crossrefs

Programs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2022
Terms a(17) and beyond from Andrew Howroyd, Feb 28 2023

A363349 Array read by antidiagonals: T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and columns and complementation of columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 8, 3, 1, 1, 1, 6, 11, 19, 10, 4, 1, 1, 1, 7, 16, 41, 32, 16, 4, 1, 1, 1, 8, 23, 81, 101, 68, 20, 5, 1, 1, 1, 9, 31, 153, 299, 301, 114, 29, 5, 1, 1, 1, 10, 41, 273, 849, 1358, 757, 210, 35, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 28 2023

Keywords

Comments

T(n,k) is also the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows and columns.

Examples

			Array begins:
======================================================
n/k| 0 1  2   3    4     5      6       7        8 ...
---+--------------------------------------------------
0  | 1 1  1   1    1     1      1       1        1 ...
1  | 1 1  1   1    1     1      1       1        1 ...
2  | 1 2  3   4    5     6      7       8        9 ...
3  | 1 2  4   7   11    16     23      31       41 ...
4  | 1 3  8  19   41    81    153     273      468 ...
5  | 1 3 10  32  101   299    849    2290     5901 ...
6  | 1 4 16  68  301  1358   6128   27008   114763 ...
7  | 1 4 20 114  757  5567  43534  343656  2645494 ...
8  | 1 5 29 210 1981 23350 319119 4633380 67013431 ...
  ...
		

Crossrefs

A259344 is the same array without the first row and column read by upward antidiagonals.
Columns k=0..6 are A000012, A004526(n+2), A005232, A006381, A006382, A056204, A056205.
Rows n=2..4 are A000027(n+1), A000601, A006380.
Main diagonal is A006383.

Programs

  • PARI
    \\ Compare A028657.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    T(n, k)={if(n==0, 1, my(s=0); forpart(q=n, my(e=1<
    				

A005784 Number of 4-covers of an unlabeled n-set.

Original entry on oeis.org

1, 4, 17, 65, 230, 736, 2197, 6093, 15864, 38960, 90837, 202005, 430577, 883057, 1748909, 3355213, 6252575, 11345602, 20089514, 34778306, 58964020, 98053576, 160151566, 257229974, 406739271, 633795181, 974126408, 1477999320, 2215409037, 3282874359, 4812278064
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A055080.
First differences of A006148.

Programs

Formula

G.f.: (x^20 - x^19 + 4*x^18 + 9*x^17 + 23*x^16 + 39*x^15 + 90*x^14 + 131*x^13 + 204*x^12 + 238*x^11 + 252*x^10 + 238*x^9 + 204*x^8 + 131*x^7 + 90*x^6 + 39*x^5 + 23*x^4 + 9*x^3 + 4*x^2 - x + 1)/((1 - x^4)^3*(1 - x^3)^4*(1 - x^2)^3*(1 - x)^5).
a(n) ~ n^14/2092278988800. - Stefano Spezia, Aug 08 2022
a(n) = n^14/2092278988800 + n^13/19926466560 + n^12/418037760 + n^11/14598144 + 689*n^10/522547200 + 253*n^9/13934592 + 2184839*n^8/11705057280 + 10313*n^7/6967296 + 2319707*n^6/250822656 + 1817221*n^5/39813120 + 2405336243*n^4/13795246080 + 151784975*n^3/306561024 + 93746545019*n^2/95103590400 + 924100468541*n/717352796160 + 1 + (n^2/486 + 5*n/162 + 233/2187)*floor(n/3) + (n^2/256 + 15*n/256 + 101/512)*floor(n/4) - (n^3/1458 + 7*n^2/486 + 22*n/243 + 356/2187)*floor((n+1)/3) + (n^5/122880 + 5*n^4/16384 + 125*n^3/24576 + 359*n^2/8192 + 10967*n/61440 + 8461/32768)*floor(n/2) + (n/256 + 15/512)*floor((n+1)/4). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A005785 Number of 5-covers of an unlabeled n-set.

Original entry on oeis.org

1, 5, 28, 156, 863, 4571, 22952, 108182, 477136, 1969270, 7625579, 27804973, 95858868, 313747418, 978734539, 2920530663, 8363945469, 23057872913, 61357278239, 157985305473, 394486861086, 957156158394, 2260761331227
Offset: 0

Views

Author

Keywords

Comments

Number of 5 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A055080.
First differences of A052264.

Programs

Formula

G.f.: - (x^68 - 2*x^67 + 10*x^66 + 32*x^65 + 175*x^64 + 794*x^63 + 3441*x^62 + 13186*x^61 + 46027*x^60 + 146118*x^59 + 427347*x^58 + 1155432*x^57 + 2912873*x^56 + 6875608*x^55 + 15281029*x^54 + 32094658*x^53 + 63945531*x^52 + 121210914*x^51 + 219194198*x^50 + 378998758*x^49 + 627863648*x^48 + 998282344*x^47 + 1525746624*x^46 + 2244502676*x^45 + 3181886869*x^44 + 4351201210*x^43 + 5744918381*x^42 + 7328807372*x^41 + 9039504349*x^40 + 10785767638*x^39 + 12455264802*x^38 + 13925287384*x^37 + 15077477135*x^36 + 15812782150*x^35 + 16065602576*x^34 + 15812782150*x^33 + 15077477135*x^32 + 13925287384*x^31 + 12455264802*x^30 + 10785767638*x^29 + 9039504349*x^28 + 7328807372*x^27 + 5744918381*x^26 + 4351201210*x^25 + 3181886869*x^24 + 2244502676*x^23 + 1525746624*x^22 + 998282344*x^21 + 627863648*x^20 + 378998758*x^19 + 219194198*x^18 + 121210914*x^17 + 63945531*x^16 + 32094658*x^15 + 15281029*x^14 + 6875608*x^13 + 2912873*x^12 + 1155432*x^11 + 427347*x^10 + 146118*x^9 + 46027*x^8 + 13186*x^7 + 3441*x^6 + 794*x^5 + 175*x^4 + 32*x^3 + 10*x^2 - 2*x + 1)/((x^6 - 1)^2*(x^4 + x^3 + x^2 + x + 1)^6*(x^3 - x^2 + x - 1)^6*(x^2 + x + 1)^6*(x + 1)^10*(x - 1)^23).
a(n) = n^30/(30!*5!) + O(n^29). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0) = 1 prepended by Stefano Spezia, Aug 09 2022

A005786 Number of 6-covers of an unlabeled n-set.

Original entry on oeis.org

1, 6, 43, 336, 2864, 25326, 223034, 1890123, 15115098, 112980937, 787320629, 5121184083, 31188412225, 178517111561, 964196387369, 4933278065881, 23997707450765, 111358094980387, 494444748602595, 2106504840061571
Offset: 0

Views

Author

Keywords

Comments

Number of 6 X n binary matrices with at least one 1 in every column up to row and column permutations.

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Vladeta Jovovic, Jun 12 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Views

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.

A002725 Number of incidence matrices: n X (n+1) binary matrices under row and column permutations.

Original entry on oeis.org

1, 3, 13, 87, 1053, 28576, 2141733, 508147108, 402135275365, 1073376057490373, 9700385489355970183, 298434346895322960005291, 31479360095907908092817694945, 11474377948948020660089085281068730, 14568098446466140788730090352230460100956
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 by convention.

Examples

			a(1) = 3: [0,0], [0,1], [1,1].
a(2) = 13:
000 000 000 000 001 001 001 001 001 011 011 011 111
000 001 011 111 001 010 011 110 111 011 101 111 111
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1))[], j=0..n/i)}))
        end:
    a:= n-> add(add(2^add(add(igcd(i, j)* coeff(s, x, i)*
          coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/
          mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/
          mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)),
          t=b(n+1$2)), s=b(n$2)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[2^Sum[ Sum [ GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[ i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}] / Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+1, n+1]}], {s,  b[n, n]}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
  • PARI
    a(n) = A(n+1,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n+1} (fix A[s_1, s_2, ...; t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fix A[...] = 2^sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Sean A. Irvine, Jul 31 2014

Extensions

More terms from Vladeta Jovovic, Feb 04 2000
Previous Showing 11-20 of 33 results. Next