A191302
Denominators in triangle that leads to the Bernoulli numbers.
Original entry on oeis.org
1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0
The first few rows of the array ASPEC array:
2, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
2, 5, 9, 14, 20, 27, 35,
2, 7, 16, 30, 50, 77, 112,
2, 9, 25, 55, 105, 182, 294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
1/2, 0, 0, 0
1/2, 0, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, -4/105
1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
B(0) = 1 = 1/1
B(1) = 1/2 = 1/2
B(2) = 1/6 = 1/2 - 1/3
B(3) = 0 = 1/2 - 1/2
B(4) = -1/30 = 1/2 - 2/3 + 2/15
B(5) = 0 = 1/2 - 5/6 + 1/3
B(6) = 1/42 = 1/2 - 1/1 + 3/5 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 4/15
-
nmax:=13: mmax:=nmax:
A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od:
for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od:
seq(T(n,n+1),n=0..nmax):
for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od:
for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od:
for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od:
for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od:
for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od:
for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od:
for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od:
for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od:
seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax):
Tx:=0:
for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od:
seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
-
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
A098599
Riordan array ((1+2*x)/(1+x), (1+x)).
Original entry on oeis.org
1, 1, 1, -1, 2, 1, 1, 0, 3, 1, -1, 0, 2, 4, 1, 1, 0, 0, 5, 5, 1, -1, 0, 0, 2, 9, 6, 1, 1, 0, 0, 0, 7, 14, 7, 1, -1, 0, 0, 0, 2, 16, 20, 8, 1, 1, 0, 0, 0, 0, 9, 30, 27, 9, 1, -1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, -1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1, 1, 0, 0, 0, 0, 0, 0, 13, 91, 182, 156, 65, 13, 1
Offset: 0
Triangle begins as:
1;
1, 1;
-1, 2, 1;
1, 0, 3, 1;
-1, 0, 2, 4, 1;
1, 0, 0, 5, 5, 1;
-1, 0, 0, 2, 9, 6, 1;
1, 0, 0, 0, 7, 14, 7, 1;
-1, 0, 0, 0, 2, 16, 20, 8, 1;
1, 0, 0, 0, 0, 9, 30, 27, 9, 1;
-
A098599:= func< n,k | n eq 0 select 1 else Binomial(k, n-k) + Binomial(k-1, n-k-1) >;
[A098599(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2024
-
T[n_, k_]:= If[n==0, 1, Binomial[k,n-k] +Binomial[k-1,n-k-1]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 27 2024 *)
-
def A098599(n,k): return 1 if n==0 else binomial(k, n-k) + binomial(k-1, n-k-1)
flatten([[A098599(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 27 2024
A097207
Triangle read by rows: T(n,k) = binomial(n,k) + 2*binomial(n,k-1).
Original entry on oeis.org
1, 1, 3, 1, 4, 5, 1, 5, 9, 7, 1, 6, 14, 16, 9, 1, 7, 20, 30, 25, 11, 1, 8, 27, 50, 55, 36, 13, 1, 9, 35, 77, 105, 91, 49, 15, 1, 10, 44, 112, 182, 196, 140, 64, 17, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 1, 12, 65, 210, 450, 672, 714, 540, 285, 100, 21, 1, 13, 77, 275, 660
Offset: 0
Triangle begins:
1
1 3
1 4 5
1 5 9 7
1 6 14 16 9
-
a097207 n k = a097207_tabl !! n !! k
a097207_row n = a097207_tabl !! n
a097207_tabl = map init $ tail a029635_tabl
-- Reinhard Zumkeller, Mar 12 2012
-
T[n_, k_] := Binomial[n, k] + 2Binomial[n, k - 1]; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Sep 21 2004 *)
A156886
a(n) = Sum_{k=0..n} C(n,k)*C(3*n+k,k).
Original entry on oeis.org
1, 5, 43, 416, 4239, 44485, 475780, 5156548, 56437231, 622361423, 6904185523, 76964141600, 861408728964, 9673849095708, 108954068684616, 1230185577016156, 13920106205444335, 157814104889538739
Offset: 0
-
A156886 := proc(n)
add(binomial(n,k)*binomial(3*n+k,k), k = 0..n);
end proc:
seq(A156886(n), n = 0..20); # Peter Bala, Feb 11 2018
-
a[n_] := Sum[ Binomial[n, k] Binomial[3n + k, k], {k, 0, n}]; Array[a, 21, 0] (* Robert G. Wilson v, Feb 11 2018 *)
A156887
a(n) = Sum_{k=0..n} C(n,k)*C(4*n+k,k).
Original entry on oeis.org
1, 6, 64, 768, 9708, 126386, 1676956, 22548168, 306167324, 4188703512, 57649462164, 797294161824, 11071026740964, 154250752864812, 2155368246401224, 30192512693210888, 423859798484668188, 5961793387214958792, 83998039356129372448, 1185277027372535468544
Offset: 0
-
A156887 := proc(n)
add(binomial(n,k)*binomial(4*n+k,k),k=0..n) ;
end proc: # R. J. Mathar, Feb 25 2015
-
Table[Sum[Binomial[n,k]Binomial[4n+k,k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 24 2018 *)
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+k, k))} \\ Seiichi Manyama, Feb 02 2019
A157000
Triangle T(n,k) = (n/k)*binomial(n-k-1, k-1) read by rows.
Original entry on oeis.org
2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
Offset: 2
The table starts in row n=2, column k=1 as:
2;
3;
4, 2;
5, 5;
6, 9, 2;
7, 14, 7;
8, 20, 16, 2;
9, 27, 30, 9;
10, 35, 50, 25, 2;
11, 44, 77, 55, 11;
12, 54, 112, 105, 36, 2;
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 199
-
[[n*Binomial(n-k-1,k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
-
Table[(n/k)*Binomial[n-k-1, k-1], {n,2,20}, {k,1,Floor[n/2]}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
-
a(n,k)=n*binomial(n-k-1,k-1)/k; \\ Charles R Greathouse IV, Jul 10 2011
-
[[n*binomial(n-k-1,k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019
Offset 2, keyword:tabf, more terms by the Assoc. Eds. of the OEIS, Nov 01 2010
A164851
Generalized Lucas-Pascal triangle; (11*10^n, 1).
Original entry on oeis.org
1, 11, 1, 110, 12, 1, 1100, 122, 13, 1, 11000, 1222, 135, 14, 1, 110000, 12222, 1357, 149, 15, 1, 1100000, 122222, 13579, 1506, 164, 16, 1, 11000000, 1222222, 135801, 15085, 1670, 180, 17, 1
Offset: 0
Triangle begins:
1;
11, 1;
110, 12, 1;
1100, 122, 13, 1;
11000, 1222, 135, 14, 1;
110000, 12222, 1357, 149, 15, 1;
1100000, 122222, 13579, 1506, 164, 16, 1;
11000000,1222222, 135801, 15085, 1670, 180, 17, 1;
...
-
G[0]:= 1;
G[1]:= 11+x;
G[2]:= 110+12*x+x^2;
for nn from 3 to 20 do
G[nn]:= expand((x+11)*G[nn-1]-10*(x+1)*G[nn-2]);
od:
seq(seq(coeff(G[n],x,j),j=0..n),n=0..20); # Robert Israel, Jul 17 2017
-
T[0, 0] := 1; T[n_, n_] := 1; T[n_, 0] := 11*10^(n - 1); T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Dec 22 2017 *)
A207628
Triangle of coefficients of polynomials v(n,x) jointly generated with A207627; see the Formula section.
Original entry on oeis.org
1, 1, 4, 1, 6, 8, 1, 8, 20, 16, 1, 10, 36, 56, 32, 1, 12, 56, 128, 144, 64, 1, 14, 80, 240, 400, 352, 128, 1, 16, 108, 400, 880, 1152, 832, 256, 1, 18, 140, 616, 1680, 2912, 3136, 1920, 512, 1, 20, 176, 896, 2912, 6272, 8960, 8192, 4352, 1024, 1, 22, 216
Offset: 1
First five rows:
1;
1, 4;
1, 6, 8;
1, 8, 20, 16;
1, 10, 36, 56, 32;
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207627 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207628 *)
A293600
G.f. A(x,y) = Sum_{-oo..+oo} (x - y^n)^(n+1), as a flattened rectangular array of coefficients T(n,k) of x^n * y^(k*(n+k-1)) in A(x,y) for n>=1.
Original entry on oeis.org
1, 1, -2, 1, -3, 2, 1, -4, 5, -2, 1, -5, 9, -7, 2, 1, -6, 14, -16, 9, -2, 1, -7, 20, -30, 25, -11, 2, 1, -8, 27, -50, 55, -36, 13, -2, 1, -9, 35, -77, 105, -91, 49, -15, 2, 1, -10, 44, -112, 182, -196, 140, -64, 17, -2, 1, -11, 54, -156, 294, -378, 336, -204, 81, -19, 2, 1, -12, 65, -210, 450, -672, 714, -540, 285, -100, 21, -2, 1, -13, 77, -275, 660, -1122, 1386, -1254, 825, -385, 121, -23, 2, 1, -14, 90, -352, 935, -1782, 2508, -2640, 2079, -1210, 506, -144, 25, -2, 1, -15, 104, -442, 1287, -2717, 4290, -5148, 4719, -3289, 1716, -650, 169, -27, 2
Offset: 1
G.f. A(x,y) = Sum_{n>=1} x^n * Sum_{k>=0} T(n,k) * y^(k*(n+k-1))
such that A(x,y) = Sum_{-oo..+oo} (x - y^n)^(n+1).
Explicitly, the g.f. of this array begins:
A(x,y) = x*(1 - 2*y + 2*y^4 - 2*y^9 + 2*y^16 - 2*y^25 + 2*y^36 +...)
+ x^2*(1 - 3*y^2 + 5*y^6 - 7*y^12 + 9*y^20 - 11*y^30 + 13*y^42 +...)
+ x^3*(1 - 4*y^3 + 9*y^8 - 16*y^15 + 25*y^24 - 36*y^35 + 49*y^48 +...)
+ x^4*(1 - 5*y^4 + 14*y^10 - 30*y^18 + 55*y^28 - 91*y^40 + 140*y^54 +...)
+ x^5*(1 - 6*y^5 + 20*y^12 - 50*y^21 + 105*y^32 - 196*y^45 + 336*y^60 +...)
+ x^6*(1 - 7*y^6 + 27*y^14 - 77*y^24 + 182*y^36 - 378*y^50 + 714*y^66 +...)
+ x^7*(1 - 8*y^7 + 35*y^16 - 112*y^27 + 294*y^40 - 672*y^55 + 1386*y^72 +...)
+ x^8*(1 - 9*y^8 + 44*y^18 - 156*y^30 + 450*y^44 - 1122*y^60 + 2508*y^78 +...)
+...
Summing along columns gives the alternate g.f.:
A(x,y) = x/(1-x) + Sum_{n>=1} (-1)^n * x * y^(n^2) * (2 - x*y^n)/(1 - x*y^n)^(n+1).
Note that the coefficient of x in A(x,y) is Jacobi's theta_4 function of y.
Also, the coefficient of x^2 in A(x,y) equals Product_{n>=1} (1 - y^(2*n))^3.
RECTANGULAR ARRAY.
This array of coefficients T(n,k) of x^n * y^(k*(n+k-1)) in A(x,y) begins:
n=1: [1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, ...];
n=2: [1, -3, 5, -7, 9, -11, 13, -15, 17, -19, 21, ...];
n=3: [1, -4, 9, -16, 25, -36, 49, -64, 81, -100, 121, ...];
n=4: [1, -5, 14, -30, 55, -91, 140, -204, 285, -385, 506, ...];
n=5: [1, -6, 20, -50, 105, -196, 336, -540, 825, -1210, 1716, ...];
n=6: [1, -7, 27, -77, 182, -378, 714, -1254, 2079, -3289, 5005, ...];
n=7: [1, -8, 35, -112, 294, -672, 1386, -2640, 4719, -8008, 13013, ...];
n=8: [1, -9, 44, -156, 450, -1122, 2508, -5148, 9867, -17875, 30888, ...];
n=9: [1, -10, 54, -210, 660, -1782, 4290, -9438, 19305, -37180, 68068, ...]; ...
where row n has g.f.: (1 - z) / (1 + z)^n.
The array has the alternate g.f.: (1 - z) / (1 - x + z).
RELATED SERIES.
We may also write A(x,y) = P(x,y) + Q(x,y) where
P(x,y) = -1 + Sum_{n>=0} (-1)^n * y^(n*(n-1)) / (1 - x*y^n)^(n+1),
Q(x,y) = Sum_{n>=0} (-1)^n * y^(n*(n+1)) / (1 - x*y^(n+1))^n.
These series begin as follows:
P(x,y) = (-1 + y^2 - y^6 + y^12 - y^20 + y^30 - y^42 + y^56 - y^72 +...)
+ x*(1 - 2*y + 3*y^4 - 4*y^9 + 5*y^16 - 6*y^25 + 7*y^36 - 8*y^49 +...)
+ x^2*(1 - 3*y^2 + 6*y^6 - 10*y^12 + 15*y^20 - 21*y^30 + 28*y^42 +...)
+ x^3*(1 - 4*y^3 + 10*y^8 - 20*y^15 + 35*y^24 - 56*y^35 + 84*y^48 +...)
+ x^4*(1 - 5*y^4 + 15*y^10 - 35*y^18 + 70*y^28 - 126*y^40 + 210*y^54 +...)
+ x^5*(1 - 6*y^5 + 21*y^12 - 56*y^21 + 126*y^32 - 252*y^45 + 462*y^60 +...)
+ x^6*(1 - 7*y^6 + 28*y^14 - 84*y^24 + 210*y^36 - 462*y^50 + 924*y^66 +...)
+ x^7*(1 - 8*y^7 + 36*y^16 - 120*y^27 + 330*y^40 - 792*y^55 + 1716*y^72 +...)
+...
Q(x,y) = (1 - y^2 + y^6 - y^12 + y^20 - y^30 + y^42 - y^56 + y^72 +...)
+ x*(-y^4 + 2*y^9 - 3*y^16 + 4*y^25 - 5*y^36 + 6*y^49 - 7*y^64 +...)
+ x^2*(-y^6 + 3*y^12 - 6*y^20 + 10*y^30 - 15*y^42 + 21*y^56 +...)
+ x^3*(-y^8 + 4*y^15 - 10*y^24 + 20*y^35 - 35*y^48 + 56*y^63 +...)
+ x^4*(-y^10 + 5*y^18 - 15*y^28 + 35*y^40 - 70*y^54 + 126*y^70 +...)
+ x^5*(-y^12 + 6*y^21 - 21*y^32 + 56*y^45 - 126*y^60 + 252*y^77 +...)
+ x^6*(-y^14 + 7*y^24 - 28*y^36 + 84*y^50 - 210*y^66 + 462*y^84 +...)
+ x^7*(-y^16 + 8*y^27 - 36*y^40 + 120*y^55 - 330*y^72 + 792*y^91 +...)
+...
-
{ T(n,k) = my(z=x+x*O(x^k)); polcoeff( (1-z)/(1+z)^n, k) }
/* Print as a rectangular array: */
for(n=1,10,for(k=0,10,print1(T(n,k),", "));print(""))
/* Print as a triangle: */
for(n=0,14,for(k=0,n,print1(T(n-k+1,k),", "));print(""))
/* Print as a flattened array: */
for(n=0,14,for(k=0,n,print1(T(n-k+1,k),", "));)
A081496
Start with Pascal's triangle; a(n) is the sum of the numbers on the periphery of the n-th central rhombus containing exactly 4 numbers.
Original entry on oeis.org
5, 14, 46, 160, 574, 2100, 7788, 29172, 110110, 418132, 1595620, 6113744, 23505356, 90633800, 350351640, 1357278300, 5268292830, 20483876820, 79765662900, 311038321440, 1214362277700, 4746455801880, 18570960418920, 72728638093800
Offset: 1
The first three rhombuses are
...1...........2.........6
.1...1.......3...3.....10..10
...2......,....6.....,...20
and the corresponding sums are a(1) =5, a(2) =14 and a(3) =46.
-
seq((9*n-4)*binomial(2*(n-1),(n-1))/n,n=1..26); # C. Ronaldo, Dec 20 2004
-
{ A029635(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; \\ program from Michael Somos in A029635
{a(n) = sum(k=0,n,A029635(n, k)^2)} \\ Paul D. Hanna, Oct 17 2017
for(n=1,30,print1(a(n),", "))
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
Comments