cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A268249 T(n,k)=Number of nXk 0..k arrays with every repeated value in every row greater than, and every column greater than or equal to, the previous repeated value.

Original entry on oeis.org

2, 9, 4, 60, 81, 8, 570, 3600, 729, 15, 6960, 324900, 216000, 6084, 28, 104006, 48441600, 185193000, 12067722, 49284, 51, 1837752, 10817248036, 337153536000, 98956027822, 648144348, 386884, 92, 37478718, 3377332413504, 1125058699232216
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Table starts
...2........9............60...............570.................6960
...4.......81..........3600............324900.............48441600
...8......729........216000.........185193000.........337153536000
..15.....6084......12067722.......98956027822.....2213773305829075
..28....49284.....648144348....50740994294843.13958709698552890082
..51...386884...33600202086.25094770808231271
..92..2965284.1691726672094
.164.22268961
.290

Examples

			Some solutions for n=2 k=4
..2..3..1..1....3..1..4..3....0..1..0..3....4..0..0..4....0..2..4..3
..1..1..0..4....1..1..3..4....1..0..0..4....0..4..3..1....0..0..1..3
		

Crossrefs

Column 1 is A029907(n+1).
Column 2 is A268014.
Column 3 is A267977.
Row 1 is A268205.
Row 2 is A268206.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: [order 15]

A102702 Expansion of (2-x-2*x^2-x^3)/(1-x-x^2)^2.

Original entry on oeis.org

2, 3, 6, 10, 18, 31, 54, 93, 160, 274, 468, 797, 1354, 2295, 3882, 6554, 11046, 18587, 31230, 52401, 87812, 146978, 245736, 410425, 684818, 1141611, 1901454, 3164458, 5262330, 8744599, 14521158, 24097797, 39965224, 66241330, 109731132
Offset: 0

Views

Author

Creighton Dement, Feb 04 2005

Keywords

Comments

A floretion-generated sequence which results from a certain transform of the Fibonacci numbers. Specifically, (a(n)) is the (type 1B) tesfor-transform of the Fibonacci numbers (A000045) with respect to the floretion + .5'i + .5i' Note, for example, that the sequence A001629, appearing in the formula given, has the name "Fibonacci numbers convolved with themselves" and that this sequence arises in FAMP (see program code) under the name: the lesfor-transform (type 1B) of the Fibonacci numbers (A000045) with respect to the floretion + .5'i + .5i' . The denominator of the generating function has roots at the golden ratio phi and -(1+phi).
Floretion Algebra Multiplication Program. FAMP Code: (a(n)) = 2tesforseq[ + .5'i + .5i' ], 2lesforseq = A001629, jesforseq = A029907, vesforseq = A000045, ForType: 1B.
a(n) is the total number of parts not greater than 2 among all compositions of n+3 in which only the last part may be equal to 1. - Andrew Yezhou Wang, Jul 14 2019

References

  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Chapter 15, page 187, "Hosoya's Triangle".
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989, p. 183, Nr.(98).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (2-x-2*x^2-x^3)/(1-x-x^2)^2)); // Marius A. Burtea, Dec 31 2019
  • Mathematica
    CoefficientList[Series[(2-x-2x^2-x^3)/(x^4+2x^3-x^2-2x+1),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{2,3,6,10},40] (* Harvey P. Dale, Apr 21 2014 *)

Formula

G.f.: (2-x-2*x^2-x^3)/(1-x-x^2)^2.
a(n) = 2*F(n+1) + A001629(n+3) - 2*A029907(n+1);
F(n+1) = a(n+2) - a(n+1) - a(n).
a(0)=2, a(1)=3, a(2)=6, a(3)=10, a(n)=2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Apr 21 2014
a(n) = A010049(n+1) + A000045(n+2). - R. J. Mathar, May 21 2019
a(n) = ((2*n+10)*F(n+1)-(n-4)*F(n))/5. - Andrew Yezhou Wang, Jul 14 2019

Extensions

Corrected by T. D. Noe, Nov 02 2006

A211228 Shallow diagonal sums of A211226.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 8, 8, 15, 13, 28, 21, 51, 34, 92, 55, 164, 89, 290, 144, 509, 233, 888, 377, 1541, 610, 2662, 987, 4580, 1597, 7852, 2584, 13419, 4181, 22868, 6765, 38871, 10946, 65920, 17711
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Comments

The even-indexed terms a(2*n) count the compositions of n+2 into odd parts while the odd-indexed terms a(2*n+3) count the total number of parts in the compositions of n+2 into odd parts.

Examples

			The compositions of 5 into odd parts are 1+1+1+1+1, 1+1+3, 1+3+1, 3+1+1 and 5. Hence a(6) = 5 and a(9) = 15.
		

Crossrefs

Formula

Let f(n) := (floor(n/2))! and define c(n,k) = f(n)/(f(k)*f(n-k)) = A211226(n,k). Then a(n) = sum {k = 0..floor(n/2)} c(n-k,k).
a(2*n) = A000045(n+2); a(2*n-1) = A029907(n).
O.g.f.: (1+x-2*x^4-x^5-x^6)/(1-x^2-x^4)^2 = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + ....

A240847 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=a(1)=a(3)=0, a(2)=1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, -2, -5, -12, -25, -50, -96, -180, -331, -600, -1075, -1908, -3360, -5878, -10225, -17700, -30509, -52390, -89664, -153000, -260375, -442032, -748775, -1265832, -2136000, -3598250, -6052061, -10164540
Offset: 0

Views

Author

Paul Curtz, Apr 13 2014

Keywords

Comments

F1(m, n) is the difference table of a(n):
0, 0, 1, 0, 1, 0, 0, -2, ...
0, 1, -1, 1, -1, 0, -2, -3, ...
1, -2, 2, -2, 1, -2, -1, -4, ...
-3, 4, -4, 3, -3, 1, -3, -2, ...
7, -8, 7, -6, 4, -4, 1, -4, ...
-15, 15, -13, 10, -8, 5, -5, 1, ...
30, -28, 23, -18, 13, -10, 6, -6, ...
The recurrence holds for every row and every signed column.
Main diagonal: F1(n, n) = A001477(n).
First upper diagonal: F1(n, n+1) = -A001477(n).
F1(m, n) = F1(m, n-1) + F1(m+1, n-1).
Inverse binomial transform: 0, 0, 1, -3, 7, -15, 30, ... = 0, 0, followed by (-1)^n*A023610(n). Without signs: F2(0, n) = 0, 0, 1, 3, 7, 15, 30, ... = b(n) has the same recurrence.
F1(0, n) + F2(0, n) = 0, followed by A099920(n).
a(n) and b(n) are reciprocal by their inverse binomial transform.
0, followed by A001629(n) is an autosequence.
F1(m, 1) = (-1)^n*A029907(n).
F1(1, n) = 0, 1, -1, 1, -1, followed by -A226432(n+3).
F1(m, 2) = (-1)^n*A208354(n).

Crossrefs

Cf. A000032, A000045, A001629 (main sequence for the recurrence), A067331.

Programs

  • GAP
    List([0..40], n-> (6*Fibonacci(n-3) - (n-3)*Lucas(1,-1,n-3)[2])/5 ); # G. C. Greubel, Feb 06 2020
  • Magma
    [(6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5: n in [0..40]]; // G. C. Greubel, Feb 06 2020
    
  • Maple
    with(combinat): seq( ((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5, n=0..40); # G. C. Greubel, Feb 06 2020
  • Mathematica
    a[n_]:= a[n]= 2*a[n-1] +a[n-2] -2*a[n-3] -a[n-4]; a[0]= a[1]= a[3]= 0; a[2]= 1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 17 2014 *)
    CoefficientList[Series[x^2*(1-2*x)/(1-x-x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,2d+c-2b-a}; NestList[nxt,{0,0,1,0},40][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
  • PARI
    Vec(x^2*(1-2*x)/(1-x-x^2)^2 + O(x^100)) \\ Colin Barker, Apr 13 2014
    
  • PARI
    vector(41, n, my(m=n-1); ((m+3)*fibonacci(m-3) - 2*(m-3)*fibonacci(m-2) )/5 ) \\ G. C. Greubel, Feb 06 2020
    
  • Sage
    [((n+3)*fibonacci(n-3) - 2*(n-3)*fibonacci(n-2))/5 for n in (0..40)] # G. C. Greubel, Feb 06 2020
    

Formula

a(n) = 0, 0, 1, 0, 1, 0, 0, followed by -A067331.
G.f.: x^2*(1-2*x)/(1-x-x^2)^2. - Colin Barker, Apr 13 2014
a(n) = ( (10*n + (3-5*n)*t)*(1+t)^n + (10*n-(3-5*n)*t)*(1-t)^n )/(25*2^n), where t=sqrt(5). - Bruno Berselli, Apr 17 2014
a(n) = (6*Fibonacci(n-3) - (n-3)*Lucas(n-3))/5 = ((n+3)*Fibonacci(n-3) - 2*(n-3)*Fibonacci(n-2))/5. - G. C. Greubel, Feb 06 2020

A091594 Triangle read by rows: T(n,m) := Sum_{k=0..floor((n-m)/2)} binomial(n-2k,m) * binomial(n-m-k,k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 8, 7, 4, 1, 8, 15, 16, 11, 5, 1, 13, 28, 34, 28, 16, 6, 1, 21, 51, 70, 66, 45, 22, 7, 1, 34, 92, 140, 148, 116, 68, 29, 8, 1, 55, 164, 274, 320, 281, 190, 98, 37, 9, 1, 89, 290, 527, 672, 651, 494, 295, 136, 46, 10, 1, 144, 509, 999, 1379, 1456, 1219, 819, 439, 183, 56, 11, 1
Offset: 0

Views

Author

Paul Barry, Jan 23 2004

Keywords

Comments

A Fibonacci related number triangle.

Examples

			Rows begin:
   1,
   1,  1,
   2,  2,  1,
   3,  4,  3,  1,
   5,  8,  7,  4,  1,
   8, 15, 16, 11,  5,  1,
  13, 28, 34, 28, 16,  6, 1,
  21, 51, 70, 66, 45, 22, 7, 1,
  ...
		

Crossrefs

Columns include A000045, A029907, A054455. Row sums are A006054.

Formula

k-th column has g.f. 1/(1-x-x^2) * ( x*(1-x^2)/(1-x-x^2) )^k.

A134508 Row sums of triangle A134507.

Original entry on oeis.org

1, 2, 5, 11, 22, 42, 77, 138, 243, 423, 730, 1252, 2137, 3634, 6161, 10419, 17582, 29614, 49797, 83610, 140191, 234767, 392690, 656136, 1095217, 1826402, 3043037, 5065883, 8426758, 14006898, 23265725, 38618922, 64062987, 106206519, 175972426
Offset: 1

Views

Author

Gary W. Adamson, Oct 28 2007

Keywords

Examples

			a(4) = 11 = sum of row 4 terms of triangle A134507 = (4 + 5 + 1 + 1).
a(4) = 11 = A000071(6) + A029907(4) - 4 = (7 + 8 - 4).
		

Crossrefs

Programs

  • PARI
    a(n)=fibonacci(n+2) + ((n+4)*fibonacci(n)+2*n*fibonacci(n-1))/5 - n - 1 \\ Charles R Greathouse IV, Feb 13 2018

Formula

a(n) = A000071(n+2) + A029907(n) - n. [Corrected by Charles R Greathouse IV, Feb 13 2018]

Extensions

More terms from Charles R Greathouse IV, Feb 13 2018

A182725 Bisection of A005291.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 28, 51, 92, 163, 285, 490, 833, 1396, 2313, 3789
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2010

Keywords

Comments

This sequence contains the string "1, 2, 4, 8, 15, 28, 51, 92" the same as A005682 and A029907. The next terms is similar. I think that A005291 is a sequence formed from two similar mechanisms but not from only one.

Crossrefs

A276129 a(n) is the number of ordered ways to tile a strip of length n+2 with white tiles of odd lengths summing to length n and two red squares.

Original entry on oeis.org

1, 3, 6, 13, 27, 54, 106, 204, 387, 725, 1344, 2469, 4500, 8145, 14652, 26213, 46665, 82704, 145982, 256722, 449937, 786109, 1369494, 2379447, 4123944, 7130895, 12303714, 21186013, 36411399, 62466906, 106987282, 182946888, 312367887, 532587461, 906840060
Offset: 0

Views

Author

Gregory L. Simay, Aug 21 2016

Keywords

Comments

a(n) is a specific case of b(r,n), the number of ordered ways to rearrange a tiling of length n + r, with odd(1,3,5...) white tiles summing to n and r red squares.
Define the following summation: b(0,r,n) = b(r,n); b(1,r,n) = b(r, n-2) + b(r, n-4) + b(r, n-6) + ..; b(s, r, n) = b(s-1, r, n-2) + b(s-1, r, n-4) + b(r-1, s, n-6) + ...
The number of compositions of n with exactly r even numbers is b(r, r, n-2r).
Except for the initial 1, this is the p-INVERT transform of (1,0,1,0,1,0,...) for p(S) = (1 - S)^3. See A291219. - Clark Kimberling, Sep 04 2017

Examples

			Let 1,3 be the lengths of the odd tiles summing to 3 and let r,r be the two odd squares. Then the resulting number of compositions is a(3) = 13. The 6 compositions are 3,r,r; r,3,r; r,r,3; 1,1,1,r,r; 1,1,r,r,1; 1,r,r,1,1; r,r,1,1,1; 1,1,r,1,r; 1,r,1,r,1; r,1,r,1,1; r,1,1,r,1; 1,r,1,1,r; r,1,1,1,r.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
          `if`(n+m=0, 1, `if`(m>0, b(n, m-1), 0)+
          add(`if`(j::odd, b(n-j, m), 0), j=1..n))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 29 2016
  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[n - 2*k + 2, 2]*Binomial[n - k - 1, k], {k, 0, (n - 1)/2}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
  • PARI
    a(n)={if(n<=0, n==0, sum(k=0, (n-1)\2, binomial(n-2*k+2, 2)*binomial(n-k-1, k)))} \\ Andrew Howroyd, Dec 26 2017

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-2*k+2, 2)*binomial(n-k-1, k) for n > 0. - Andrew Howroyd, Dec 26 2017
b(0,0)=1. For n>=1, b(0,n) = b(0,0,n) = the n-th Fibonacci number, A000045(n).
b(1,0)=1. For n>=1, b(1,n) = A239342(n+1).
b(2,n) = a(n) = a(n-1) + a(n-2) + A239342(n+1) + A239342(n-1).
G.f. for b(2,n): ((1-x^2)/(1-x-x^2))^3.
G.f. for b(r,n): ((1-x^2)/(1-x-x^2))^(r+1).
b(1,1,n) = A029907(n+1).
b(r,n) = b(r, n-1) + b(r, n-2) + b(r-1, n) - b(r-1, n-2).
b(r,r,n) = b(r-1, r-1, n) + b(r, r, n-1) + b(r, r, n-2).
G.f. for b(r,r,n): (1-x^2)/((1-x-x^2)^(r+1)).

Extensions

More terms from Alois P. Heinz, Aug 29 2016

A100898 Triangle read by rows: T(n,k) is the number of k-matchings of the fan graph on n+1 vertices (i.e., the join of the path graph on n vertices with one extra vertex).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 2, 1, 7, 7, 1, 9, 15, 3, 1, 11, 26, 13, 1, 13, 40, 34, 4, 1, 15, 57, 70, 21, 1, 17, 77, 125, 65, 5, 1, 19, 100, 203, 155, 31, 1, 21, 126, 308, 315, 111, 6, 1, 23, 155, 444, 574, 301, 43, 1, 25, 187, 615, 966, 686, 175, 7, 1, 27, 222, 825, 1530, 1386, 532, 57
Offset: 0

Views

Author

Emeric Deutsch, Jan 10 2005

Keywords

Comments

Row n contains 1 + ceiling(n/2) terms. The row sums yield A029907.

Examples

			T(3,2)=2 because in the graph with vertex set {O,A,B,C} and edge set {AB,BC,OA,OB,OC} the 2-matchings are: {OA,BC} and {OC,AB}.
The triangle starts:
  1;
  1,  1;
  1,  3;
  1,  5,  2;
  1,  7,  7;
  1,  9, 15,  3;
  1, 11, 26, 13;
		

Crossrefs

Cf. A029907.

Programs

  • Maple
    G:=(1-z)*(1+t*z)/(1-z-t*z^2)^2:Gser:=simplify(series(G,z=0,18)):P[0]:=1: for n from 1 to 16 do P[n]:=sort(coeff(Gser,z^n)) od:for n from 0 to 15 do seq(coeff(t*P[n],t^k),k=1..1+ceil(n/2)) od; # yields sequence in triangular form

Formula

G.f.: (1-z)(1+t*z)/(1 - z - t*z^2)^2.

A336014 Irregular triangle read by rows: T(n,1) = T(n,2) = T(n,3*n-2) = T(n,3*n-1) = n for n >= 1 and T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n > 1, 3 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 6, 7, 8, 8, 8, 7, 6, 4, 4, 5, 5, 8, 10, 13, 15, 16, 16, 15, 13, 10, 8, 5, 5, 6, 6, 10, 13, 18, 23, 28, 31, 32, 31, 28, 23, 18, 13, 10, 6, 6, 7, 7, 12, 16, 23, 31, 41, 51, 59, 63, 63, 59, 51, 41, 31, 23, 16, 12, 7, 7
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jul 04 2020

Keywords

Comments

The number of terms in row n is 3*n-1 = A016789(n-1).
The sum of row n is equal to 2*A094002(n-1) = 2*A188589(n).
Fibonacci(n) = T(n+k,n) - T(n+k-1,n) for n >= 1, k = 1,2,3,...
The elements b(k) of the main diagonal, superdiagonal 1 and all subdiagonals have the recursive formula: b(k) = 2*b(k-1) + b(k-2) - 2*b(k-3) - b(k-4) for k > 4.

Examples

			Triangle begins:
n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20...
1   1  1
2   2  2  2  2  2
3   3  3  4  4  4  4  3  3
4   4  4  6  7  8  8  8  7  6  4  4
5   5  5  8 10 13 15 16 16 15 13 10  8  5  5
6   6  6 10 13 18 23 28 31 32 31 28 23 18 13 10  6  6
7   7  7 12 16 23 31 41 51 59 63 63 59 51 41 31 23 16 12  7  7
...
		

Crossrefs

Superdiagonal 1 is A029907 for n >= 1.
The main diagonal is A208354 for n >= 1.
Subdiagonal 1 is A102702(n-1) for n >= 1.
Subdiagonal 2 is A206268(n+2) for n >= 1 (conjectured).
Subdiagonal 3 is A191830(n+3) for n >= 1.

Formula

T(n,k) = T(n,3*k-n) for 1 <= k <= 3*n-1.
T(n,k) = Sum_{u=2*(n-k)+3..2*n-k+1} ceiling(u/2)*A065941(k-2,u-2*(n-k)-3) for n >= 3, 3 <= k <= n.
T(n,k) = Sum_{m1=1..k-n} A208354(m1)*binomial(n-m1-1, k-n-m1) + Sum_{m2=1..2*n-k} A208354(m2)*binomial(n-m2-1, 2*n-k-m2) for n >= 2, n+1 <= k <= 2*n-1.
T(n,k) = Sum_{u=2*(k-2*n)+3..k-n+1} ceiling(u/2)*A065941(3*n-k-2,u-2*(k-2*n)-3) for n>= 3, 2*n <= k <= 3*(n-1).
T(n,k) = A208354(k) + (n-k)*Fibonacci(k) for n >= 3, 3 <= k <= n.
T(n,k) = A029907(k-1) + (n-k+1)*Fibonacci(k) for n >= 2, 3 <= k <= n+1.
Previous Showing 21-30 of 31 results. Next