A123585
Triangle T(n,k), 0<=k<=n, given by [1, -1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 0, 2, 2, -1, 1, 5, 3, -1, -2, 4, 10, 5, 0, -4, -4, 12, 20, 8, 1, -2, -13, -4, 31, 38, 13, 1, 3, -11, -33, 3, 73, 71, 21, 0, 6, 6, -42, -74, 34, 162, 130, 34, -1, 3, 24, 0, -130, -146, 128, 344, 235, 55, -1, -4, 21, 72, -50, -352
Offset: 0
Triangle begins:
1;
1, 1;
0, 2, 2;
-1, 1, 5, 3;
-1, -2, 4, 10, 5;
0, -4, -4, 12, 20, 8;
1, -2, -13, -4, 31, 38, 13;
1, 3, -11, -33, 3, 73, 71, 21;
0, 6, 6, -42, -74, 34, 162, 130, 34;
-
CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x + (1 - y^2)*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)
A083857
Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 3, 7, 15, 31, 63, 127, 255, ...
0, 1, 3, 8, 21, 55, 144, 377, 987, ...
0, 1, 3, 9, 27, 81, 243, 729, 2187, ...
0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
...
A085480
Expansion of 3*x*(1+2*x)/(1-3*x-3*x^2).
Original entry on oeis.org
0, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079
Offset: 1
a(4) = q^4 + q^4 = 207; p^5 + q^5 = 783, where p = (3 + sqrt(21))/2, q = (3 - sqrt(21))/2.
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.
-
CoefficientList[Series[3x (1+2x)/(1-3x-3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,3},{0,3,15},30] (* Harvey P. Dale, Jan 10 2021 *)
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A342120
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x - k*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 16, 5, 0, 1, 5, 20, 45, 44, 8, 0, 1, 6, 30, 96, 171, 120, 13, 0, 1, 7, 42, 175, 464, 648, 328, 21, 0, 1, 8, 56, 288, 1025, 2240, 2457, 896, 34, 0, 1, 9, 72, 441, 1980, 6000, 10816, 9315, 2448, 55, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 6, 12, 20, 30, ...
0, 3, 16, 45, 96, 175, ...
0, 5, 44, 171, 464, 1025, ...
0, 8, 120, 648, 2240, 6000, ...
Columns 0..10 give
A000007,
A000045(n+1),
A002605(n+1),
A030195(n+1),
A057087,
A057088,
A057089,
A057090,
A057091,
A057092,
A057093.
-
T:= (n, k)-> (<<0|1>, >^(n+1))[1, 2]:
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
T(n, k) = sum(j=0, n\2, k^(n-j)*binomial(n-j, j));
-
T(n, k) = sum(j=0, n, k^j*binomial(j, n-j));
-
T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I/2));
A368153
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - x^2.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 3, 4, -2, 4, 5, 5, 4, -10, 5, 8, 10, -3, 4, -25, 6, 13, 16, 1, -29, 14, -49, 7, 21, 28, -8, -24, -78, 56, -84, 8, 34, 47, -12, -88, -26, -162, 168, -132, 9, 55, 80, -31, -140, -200, 100, -330, 408, -195, 10, 89, 135, -58, -301, -230, -296
Offset: 1
First eight rows:
1
1 2
2 1 3
3 4 -2 4
5 5 4 -10 5
8 10 -3 4 -25 6
13 16 1 -29 14 -49 7
21 28 -8 -24 -78 56 -84 8
Row 4 represents the polynomial p(4,x) = 3 + 4*x - 2*x^2 + 4*x^3, so (T(4,k)) = (3,4,-2,4), k=0..3.
Cf.
A000045 (column 1);
A000027 (p(n,n-1));
A057083 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A190970, (p(n,2));
A030195, (p(n,-2));
A052918, (p(n,-3));
A190972, (p(n,-4));
A057085, (p(n,-5));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015544
Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015441,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A015555 (binomial transform).
-
[n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
-
x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A133407
a(n) = a(n-1) + 5*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 7, 17, 52, 137, 397, 1082, 3067, 8477, 23812, 66197, 185257, 516242, 1442527, 4023737, 11236372, 31355057, 87536917, 244312202, 681996787, 1903557797, 5313541732, 14831330717, 41399039377, 115555692962, 322550889847, 900329354657, 2513083803892
Offset: 0
Cf.
A030195 (shifted binomial transform).
-
a:= n-> (<<0|1>, <5|1>>^n. <<1, 2>>)[1,1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 20 2025
-
LinearRecurrence[{1,5},{1,2},30] (* Harvey P. Dale, Jul 23 2013 *)
-
x='x+O('x^99); Vec((1+x)/(1-x-5*x^2)) \\ Altug Alkan, Aug 28 2017
A199324
Triangle T(n,k), read by rows, given by (-1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, -1, 3, -2, -1, 1, 0, -2, 5, -3, -1, 1, 1, -2, -2, 7, -4, -1, 1, -1, 5, -7, -1, 9, -5, -1, 1, 0, -3, 12, -15, 1, 11, -6, -1, 1, 1, -3, -3, 21, -26, 4, 13, -7, -1, 1, -1, 7, -15, 3, 31, -40, 8, 15, -8, -1, 1, 0, -4, 22, -42
Offset: 0
Triangle begins :
1
-1, 1
0, -1, 1
1, -1, -1, 1
-1, 3, -2, -1, 1
0, -2, 5, -3, -1, 1
1, -2, -2, 7, -4, -1, 1
-1, 5, -7, -1, 9, -5, -1, 1
Comments