cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A049327 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 15, 1, 120, 30, 1, 540, 465, 45, 1, 1296, 4680, 1035, 60, 1, 1296, 33192, 15795, 1830, 75, 1, 0, 171072, 176688, 37260, 2850, 90, 1, 0, 641520, 1521828, 563409, 72450, 4095, 105, 1, 0, 1710720, 10359360, 6686064, 1375605, 124740, 5565, 120, 1
Offset: 1

Views

Author

Keywords

Examples

			{1}; {15,1}; {120,30,1}; {540,465,45,1}; {1296,4680,1035,60,1}; ...
		

Crossrefs

a(n, m) := s1(-5, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.
Cf. A049351.

Formula

a(n, m) = 6*(6*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(5, m)).

A179199 E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) with A(0)=0.

Original entry on oeis.org

0, 1, -2, 9, -64, 620, -7536, 109032, -1809984, 33562944, -681799680, 14980204800, -354016189440, 9017296704000, -249422713344000, 7530733353024000, -246212297533440000, 8509848430274150400, -302719894872204902400
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2010

Keywords

Examples

			E.g.f.: A(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 620*x^5/5! - 7536*x^6/6! + 109032*x^7/7! - 1809984*x^8/8! + 33562944*x^9/9! - 681799680*x^10/10! + 14980204800*x^11/11! - 354016189440*x^12/12! + ...
E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) where:
. A(x+x^2) = x - 3*x^3/3! + 20*x^4/4! - 120*x^5/5! + 624*x^6/6! - 840*x^7/7! - 58752*x^8/8! + 1512000*x^9/9! - 25660800*x^10/10! + ...
E.g.f. A = A(x) satisfies:
. x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ...
where Dx(F) = d/dx(x*F) and expansions begin:
. A*Dx(A) = 4*x^2/2! - 30*x^3/3! + 288*x^4/4! - 3500*x^5/5! +- ...
. A*Dx(A*Dx(A)) = 36*x^3/3! - 624*x^4/4! + 10680*x^5/5! -+ ...
. A*Dx(A*Dx(A*Dx(A))) = 576*x^4/4! - 18480*x^5/5! + 504000*x^6/6! -+ ...
. A*Dx(A*Dx(A*Dx(A*Dx(A)))) = 14400*x^5/5! - 751680*x^6/6! +- ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n<2, n, (-1/(n-1))*Sum[j!*Binomial[n, j]*Binomial[n-j+1, j+1]*a[n -j], {j, n-1}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Sep 03 2022 *)
  • PARI
    /* E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2): */
    {a(n)=local(A=x,B);for(m=2,n,B=(1+x)/(1+2*x+O(x^(n+3)))*subst(A,x,x+x^2+O(x^(n+3)));A=A-polcoeff(B,m+1)*x^m/(m-1));n!*polcoeff(A,n)}
    
  • PARI
    /* Recurrence (slow): */
    {a(n)=if(n<1, 0, if(n==1, 1, -n*(n-2)!*sum(i=1, n-1,binomial(n-i+1, i+1)*a(n-i)/(n-i)!)))}
    
  • PARI
    /* x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...: */
    {a(n)=local(A=x+sum(m=2,n-1,a(m)*x^m/m!),G=1,R=0);R=sum(m=1,n,(G=A*deriv(x*G+x*O(x^n)))/m!);if(n==1,1,-n!*polcoeff(R,n))}
    
  • PARI
    /* As column 0 of the matrix log of triangle A030528: */
    {a(n)=local(A030528=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),LOG,ID=A030528^0);LOG=sum(m=1,n+1,-(ID-A030528)^m/m);n!*LOG[n+1,1]}
    
  • SageMath
    @CachedFunction
    def a(n): # a = A179199
        if (n<2): return n
        else: return (-1/(n-1))*sum( factorial(j)*binomial(n,j)*binomial(n-j+1, j+1)*a(n-j) for j in (1..n-1) )
    [a(n) for n in (0..40)] # G. C. Greubel, Sep 03 2022

Formula

E.g.f. A=A(x) satisfies: x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ... where Dx(F) = d/dx(x*F).
...
a(n) = -n*(n-2)!*Sum_{i=1..n-1} C(n-i+1,i+1)*a(n-i)/(n-i)! for n>1 with a(1)=1.
...
a(n) = (-1)^(n-1)*n*A005119(n), where A005119 describes the infinitesimal generator of (x+x^2).
...
Equals column 0 of A179198, the matrix log of triangle A030528, where A030528(n,k) = C(k,n-k); the g.f. of column k in A030528 is (x+x^2)^(k+1)/x.
...
A179198(n,k) = (k+1)*a(n-k)/(n-1)! for n>0, k>=0, where A179198 = matrix log of triangle A030528.
...

A307500 Expansion of Product_{k>=1} 1/(1 - (x*(1 - x))^k).

Original entry on oeis.org

1, 1, 1, -1, -2, -4, 3, -1, 17, -16, 21, -57, 67, -130, 305, -536, 995, -1726, 2652, -4286, 7320, -13043, 24458, -45405, 81415, -141724, 239755, -400603, 676872, -1171076, 2072334, -3695550, 6519951, -11279015, 19188230, -32462795, 55334284, -95718737, 167673672, -294894076
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 39; CoefficientList[Series[Product[1/(1 - (x (1 - x))^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 39; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] (x (1 - x))^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[k, n - k] PartitionsP[k], {k, 0, n}], {n, 0, 39}]

Formula

G.f.: exp(Sum_{k>=1} sigma(k)*(x*(1 - x))^k/k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*A000041(k).

A179200 E.g.f. equals the real part of the i-th iteration of (x + x^2), where i=sqrt(-1).

Original entry on oeis.org

0, 1, 0, -6, 60, -600, 5880, -38640, -624960, 45077760, -1773129600, 58531809600, -1657462435200, 33703750080000, 171919752076800, -76383384045696000, 6034124486347776000, -348318907415331840000, 15862493882862941184000
Offset: 0

Views

Author

Paul D. Hanna, Jul 02 2010

Keywords

Comments

Let H(x) equal the i-th iteration of (x + x^2), then
. the inverse of H(x) equals the conjugate of H(x);
. H(x+x^2) = H(x) + H(x)^2;
. H(x) = F(x) + i*G(x) where G(x) = e.g.f. of A179201 and F(x) = e.g.f. of this sequence, where H(F(x) - i*G(x)) = x;
. coefficients of H(x) form the first column of triangular matrix A030528 raised to the i-th power, where A030528(n,k) = C(k,n-k).

Examples

			E.g.f: F(x) = x - 6*x^3/3! + 60*x^4/4! - 600*x^5/5! + 5880*x^6/6! +...
The e.g.f. of A179201, G(x), begins:
G(x) = 2*x^2/2! - 6*x^3/3! + 12*x^4/4! + 200*x^5/5! - 6240*x^6/6! + 139440*x^7/7! - 2869440*x^8/8! +...
The i-th iteration of (x + x^2) = H(x) = F(x) + i*G(x), begins:
H(x) = x + i*x^2 - (1 + i)*x^3 + (5 + i)*x^4/2 - (15 - 5*i)*x^5/3 + (49 - 52*i)*x^6/6 - (23 - 83*i)*x^7/3 - (93 + 427*i)*x^8/6 + (15652 + 18537*i)*x^9/126 - (61567 + 24585*i)*x^10/126 + (369519 - 42094*i)*x^11/252 - (1743963 - 1222750*i)*x^12/504 + ...
where H(F(x) - i*G(x)) = x.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),L=sum(k=1,#M,-(M^0-M)^k/k),N=sum(k=0,#L,(I*L)^k/k!));if(n<1,0,real(n!*N[n,1]))}

Formula

E.g.f.: F(x) satisfies:
. F(x) = (G(x+x^2)/G(x) - 1)/2
. G(x) = sqrt( F(x) + F(x)^2 - F(x+x^2) )
where G(x) is the e.g.f. of A179201.

A179201 E.g.f. equals the imaginary part of the i-th iteration of (x + x^2), where i=sqrt(-1).

Original entry on oeis.org

0, 0, 2, -6, 12, 200, -6240, 139440, -2869440, 53386560, -708048000, -6667689600, 1162101600000, -68789252563200, 3158414682259200, -118988867559744000, 3123174474201600000, 17680394964750336000, -10490102782572441600000
Offset: 0

Views

Author

Paul D. Hanna, Jul 02 2010

Keywords

Comments

Let H(x) equal the i-th iteration of (x + x^2), then
. the inverse of H(x) equals the conjugate of H(x);
. H(x+x^2) = H(x) + H(x)^2;
. H(x) = F(x) + i*G(x) where F(x) = e.g.f. of A179200 and G(x) = e.g.f. of this sequence, where H(F(x) - i*G(x)) = x;
. coefficients of H(x) form the first column of triangular matrix A030528 raised to the i-th power, where A030528(n,k) = C(k,n-k).

Examples

			E.g.f: G(x) = 2*x^2/2! - 6*x^3/3! + 12*x^4/4! + 200*x^5/5! +...
The e.g.f. of A179200, F(x), begins:
F(x) = x - 6*x^3/3! + 60*x^4/4! - 600*x^5/5! + 5880*x^6/6! - 38640*x^7/7! - 624960*x^8/8! +...
The i-th iteration of (x + x^2) = H(x) = F(x) + i*G(x), begins:
H(x) = x + i*x^2 - (1 + i)*x^3 + (5 + i)*x^4/2 - (15 - 5*i)*x^5/3 + (49 - 52*i)*x^6/6 - (23 - 83*i)*x^7/3 - (93 + 427*i)*x^8/6 + (15652 + 18537*i)*x^9/126 - (61567 + 24585*i)*x^10/126 + (369519 - 42094*i)*x^11/252 - (1743963 - 1222750*i)*x^12/504 + ...
where H(F(x) - i*G(x)) = x.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),L=sum(k=1,#M,-(M^0-M)^k/k),N=sum(k=0,#L,(I*L)^k/k!));if(n<1,0,imag(n!*N[n,1]))}

Formula

E.g.f.: G(x) satisfies:
. G(x) = sqrt( F(x) + F(x)^2 - F(x+x^2) )
. F(x) = (G(x+x^2)/G(x) - 1)/2
where F(x) is the e.g.f. of A179200.

A339884 Triangle read by rows: T(n, m) gives the number of partitions of n with m parts and parts from {1, 2, 3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 0, 2, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 1, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 2, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 31 2021

Keywords

Comments

Row sums give A001399(n), for n >= 1.
One could add the column [1,repeat 0] for m = 0 starting with n >= 0.

Examples

			The triangle T(n,m) begins:
  n\m  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
  1:   1
  2:   1 1
  3:   1 1 1
  4:   0 2 1 1
  5:   0 1 2 1 1
  6:   0 1 2 2 1 1
  7:   0 0 2 2 2 1 1
  8:   0 0 1 3 2 2 1 1
  9:   0 0 1 2 3 2 2 1 1
  10:  0 0 0 2 3 3 2 2 1  1
  11:  0 0 0 1 3 3 3 2 2  1  1
  12:  0 0 0 1 2 4 3 3 2  2  1  1
  13:  0 0 0 0 2 3 4 3 3  2  2  1  1
  14:  0 0 0 0 1 3 4 4 3  3  2  2  1  1
  15:  0 0 0 0 1 2 4 4 4  3  3  2  2  1  1
  16:  0 0 0 0 0 2 3 5 4  4  3  3  2  2  1  1
  17:  0 0 0 0 0 1 3 4 5  4  4  3  3  2  2  1  1
  18:  0 0 0 0 0 1 2 4 5  5  4  4  3  3  2  2  1  1
  19:  0 0 0 0 0 0 2 3 5  5  5  4  4  3  3  2  2  1  1
  20:  0 0 0 0 0 0 1 3 4  6  5  5  4  4  3  3  2  2  1  1
  ...
Row n = 6: the partitions of 6 with number of parts m = 1,2, ...., 6, and parts from {1,2,3} are (in Abramowitz-Stegun order): [] | [],[],[3,3] | [],[1,2,3],[2^3] | [1^3,3],[1^2,2^2] | [1^4,2] | 1^6, giving 0, 1, 2, 2, 1, 1.
		

Crossrefs

Cf. A001399, A008284 (all parts), A145362 (parts 1, 2), A232539 (parts <=4), A291983.
Compositions: A007818, A030528 (parts 1, 2), A078803 (parts 1, 2, 3).

Formula

Sum_{k=0..n} (-1)^k * T(n,k) = A291983(n). - Alois P. Heinz, Feb 01 2021
G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025

A049323 Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 50, 125, 125, 1, 15, 120, 540, 1296, 1296, 1, 21, 245, 1715, 7203, 16807, 16807, 1, 28, 448, 4480, 28672, 114688, 262144, 262144, 1, 36, 756, 10206, 91854, 551124, 2125764, 4782969, 4782969, 1, 45, 1200, 21000, 252000
Offset: 0

Views

Author

Keywords

Comments

These polynomials p(n, x) appear in the W. Lang reference as c1(-(n+1);x), n >= 0 on p.12. The coefficients are given there in eq.(44) on p. 6. - Wolfdieter Lang, Nov 20 2015

Examples

			The triangle a(n, m) begins:
n\m 0  1   2    3     4      5      6      7 ...
0:  1
1:  1  1
2:  1  3   3
3:  1  6  16   16
4:  1 10  50  125  125
5:  1 15 120  540  1296  1296
6:  1 21 245 1715  7203  16807  16807
7:  1 28 448 4480 28672 114688 262144 262144
... reformatted. - Wolfdieter Lang, Nov 20 2015
E.g. the third row {1,3,3} corresponds to polynomial p(2,x)= 1 + 3*x + 3*x^2.
		

Crossrefs

a(n, 0)= A000012 (powers of 1), a(n, 1)= A000217 (triangular numbers), a(n, n)= A000272(n+1), n >= 0 (diagonal), a(n, n-1)= A000272(n+1), n >= 1.
For n = 0..5 the row sequences a(n, m), m >= 0, are the first columns of the triangles A023531 (unit matrix), A030528, A049324, A049325, A049326, A049327, respectively.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1, k+1)*(n+1)^(k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 20 2015
  • Maple
    seq(seq(binomial(n+1,m+1)*(n+1)^(m-1),m=0..n),n=0..10); # Robert Israel, Oct 19 2015
  • Mathematica
    Table[Binomial[n + 1, k + 1] (n + 1)^(k - 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 19 2015 *)

Formula

a(n, m) = A033842(n, n-m) = binomial(n+1, m+1)*(n+1)^{m-1}, n >= m >= 0, else 0.
p(k-1, -x)/(1-k*x)^k =(-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
From Werner Schulte, Oct 19 2015: (Start)
a(2*n,n) = A000108(n)*(2*n+1)^n;
a(3*n,2*n) = A001764(n)*(3*n+1)^(2*n);
a(p*n,(p-1)*n) = binomial(p*n,n)/((p-1)*n+1)*(p*n+1)^((p-1)*n) for p > 0;
Sum_{m=0..n} (m+1)*a(n,m) = (n+2)^n;
Sum_{m=0..n} (-1)^m*(m+1)*a(n,m) = (-n)^n where 0^0 = 1;
p(n,x) = Sum_{m=0..n} a(n,m)*x^m = ((1+(n+1)*x)^(n+1)-1)/((n+1)^2*x).
(End)

A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Jan 15 2007

Keywords

Comments

It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n).

Examples

			Array starts as:
1 0 0 0  0  0  0 ...
0 1 1 0  0  0  0 ...
0 1 2 2  1  0  0 ...
0 0 2 5  5  3  1   0 ...
0 0 1 5 11 13  9   4   1   0...
0 0 0 3 13 26 32  26  14   5   1  0 ...
0 0 0 1  9 32 63  80  71  45  20  6  1 0 ...
0 0 0 0  4 26 80 153 201 191 135 71 27 7 1 0 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}];
    Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
  • PARI
    A=matrix(22,22);A[1,1]=1;A[2,2]=1;A[2,1]=0;A[1,2]=0;A[3,2]=1;A[2,3]=1; for(n=3,22,for(k=3,22,A[n,k]=A[n-2,k-2]+A[n-1,k-2]+A[n-2,k-1]+A[n-1,k-1])); for(n=1,22,for(i=1,n,print1(A[n-i+1,i],", ")))

Formula

A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
From Peter Bala, Nov 07 2017: (Start)
T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i).
Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528).
O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2).
The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t).
R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind.
The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t].
R(n,1) = A002605; R(n,2) = A057089. (End)

A210460 Expansion of x*(1+x)/(1-x-2*x^2-2*x^3-x^4).

Original entry on oeis.org

1, 2, 4, 10, 23, 53, 123, 285, 660, 1529, 3542, 8205, 19007, 44030, 101996, 236275, 547334, 1267906, 2937120, 6803875, 15761261, 36511157, 84578549, 195927260, 453867933, 1051390708, 2435559643, 5642004185, 13069772820, 30276291184
Offset: 1

Views

Author

Perminova Maria, Jan 22 2013

Keywords

Comments

Transform of Fibonacci numbers based on the triangle A030528.

Crossrefs

Programs

  • Magma
    [&+[Fibonacci(k)*Binomial(k,n-k): k in [Floor((n-1)/2)+1..n]]: n in [1..30]]; // Bruno Berselli, Jan 23 2013
  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - x - 2 x^2 - 2 x^3 - x^4), {x, 0, 30}], x] (* Bruno Berselli, Jan 23 2013 *)
    LinearRecurrence[{1,2,2,1},{1,2,4,10},30] (* Harvey P. Dale, Mar 28 2015 *)

Formula

a(n) = sum(Fibonacci(k)*binomial(k,n-k), k=floor((n-1)/2)+1..n).
G.f.: x*(1+x)/(1-x-2*x^2-2*x^3-x^4).
a(n) = A123392(n-1)+A123392(n-2). [Bruno Berselli, Jan 23 2013]

A177040 Irregular triangle t(n,m) = binomial(m+1,n-m) read by rows floor((n+1)/2) <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 4, 1, 6, 5, 1, 4, 10, 6, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0

Views

Author

Roger L. Bagula, May 01 2010

Keywords

Comments

Row sums are in A052952.
Contains the right half of each row of A030528. - R. J. Mathar, May 19 2013

Examples

			1;
1;
2, 1;
3, 1;
3, 4, 1;
6, 5, 1;
4, 10, 6, 1;
10, 15, 7, 1;
5, 20, 21, 8, 1;
15, 35, 28, 9, 1;
6, 35, 56, 36, 10, 1;
21, 70, 84, 45, 11, 1;
7, 56, 126, 120, 55, 12, 1;
28, 126, 210, 165, 66, 13, 1;
8, 84, 252, 330, 220, 78, 14, 1;
36, 210, 462, 495, 286, 91, 15, 1;
		

Crossrefs

Cf. A180987 (read diagonally downwards), A098925, A026729, A085478, A165253

Programs

  • Mathematica
    t[n_, m_] := Binomial[m + 1, n - m];
    Table[Table[t[n, m], {m, Floor[(n + 1)/2], n}], {n, 0, 15}];
    Flatten[%]
  • PARI
    T(m,n)=binomial(n+1,m-n) \\ Charles R Greathouse IV, May 19 2013
Previous Showing 41-50 of 51 results. Next