cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A031925 Upper prime of a difference of 6 between consecutive primes.

Original entry on oeis.org

29, 37, 53, 59, 67, 79, 89, 137, 157, 163, 173, 179, 239, 257, 263, 269, 277, 337, 359, 373, 379, 389, 439, 449, 509, 547, 563, 569, 577, 593, 599, 607, 613, 653, 659, 683, 733, 739, 757, 947, 953, 977, 983, 997, 1019, 1039, 1069, 1103, 1109
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A031924.

Programs

  • Maple
    for i from 1 to 186 do if ithprime(i+1) = ithprime(i) + 6 then print({ithprime(i+1)}); fi; od; # Zerinvary Lajos, Mar 19 2007
  • PARI
    is(n)=nextprime(n-5)==n && isprime(n-6) \\ Charles R Greathouse IV, Apr 29 2015

A047948 Smallest of three consecutive primes with a difference of 6: primes p such that p+6 and p+12 are the next two primes.

Original entry on oeis.org

47, 151, 167, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4451, 4591, 4651, 4987, 5101, 5107, 5297, 5381, 5387, 5557, 5801, 6067, 6257, 6311, 6317
Offset: 1

Views

Author

Keywords

Comments

Let p(k) be the k-th prime; sequence gives p(k) such that p(k+2) - p(k+1) = p(k+1) - p(k) = 6.

Examples

			47 is a term as the next two primes are 53 and 59.
		

Crossrefs

Subsequence of A031924.
A033451 (four consecutive primes with difference 6) is a subsequence.

Programs

  • Mathematica
    ok[p_] := (q = NextPrime[p]) == p+6 && NextPrime[q] == q+6; Select[Prime /@ Range[1000], ok][[;; 45]] (* Jean-François Alcover, Jul 11 2011 *)
    Transpose[Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={6,6}&]] [[1]] (* Harvey P. Dale, Apr 25 2014 *)
  • PARI
    is_A047948(n)={nextprime(n+1)==n+6 && nextprime(n+7)==n+12 && isprime(n)} \\ Charles R Greathouse IV, Aug 17 2011, simplified by M. F. Hasler, Jan 13 2013
    
  • PARI
    p=2;q=3;forprime(r=5,1e4,if(r-p==12&&q-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, Aug 17 2011

Extensions

Corrected by T. D. Noe, Mar 07 2008

A320701 Indices of primes followed by a gap (distance to next larger prime) of 6.

Original entry on oeis.org

9, 11, 15, 16, 18, 21, 23, 32, 36, 37, 39, 40, 51, 54, 55, 56, 58, 67, 71, 73, 74, 76, 84, 86, 96, 100, 102, 103, 105, 107, 108, 110, 111, 118, 119, 123, 129, 130, 133, 160, 161, 164, 165, 167, 170, 174, 179, 184, 185, 187, 188, 194, 195, 199, 200, 202, 208, 210, 216, 218, 219, 227, 231
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031924.
Subsequence of indices of sexy primes A023201.

Crossrefs

Equals A000720 o A031924.
Row 3 of A174349.
Indices of 6's in A001223.
Cf. A029707, A029709, A320702, A320703, ..., A320720 (analog for gaps 2, 4, 8, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Mathematica
    Position[Differences[Prime[Range[250]]],6]//Flatten (* Harvey P. Dale, Oct 13 2022 *)
  • PARI
    A(N=100,g=6,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A031924(n)).
A320701 = { i > 0 | prime(i+1) = prime(i) + 6 } = A001223^(-1)({6}).

A052380 a(n) = D is the smallest distance (D) between 2 non-overlapping prime twins differing by d=2n; these twins are [p,p+d] or [p+D,p+D+d] and p > 3.

Original entry on oeis.org

6, 6, 6, 12, 12, 12, 18, 18, 18, 24, 24, 24, 30, 30, 30, 36, 36, 36, 42, 42, 42, 48, 48, 48, 54, 54, 54, 60, 60, 60, 66, 66, 66, 72, 72, 72, 78, 78, 78, 84, 84, 84, 90, 90, 90, 96, 96, 96, 102, 102, 102, 108, 108, 108, 114, 114, 114, 120, 120, 120, 126, 126, 126, 132
Offset: 1

Views

Author

Labos Elemer, Mar 13 2000

Keywords

Comments

For d=D the quadruple of primes becomes a triple: [p,p+d],[p+d,p+2d].
Without the p > 3 condition, a(1)=2.
The starter prime p, is followed by a prime d-pattern of [d,D-d,d], where D-d=a(n)-2n is 4,2 or 0; these d-patterns are as follows: [2,4,2], [4,2,4], [6,6], [8,4,8], [10,2,10], [12,12], etc.
All terms of this sequence have digital root 3, 6 or 9. - J. W. Helkenberg, Jul 24 2013
a(n+1) is also the number of the circles added at the n-th iteration of the pattern generated by the construction rules: (i) At n = 0, there are six circles of radius s with centers at the vertices of a regular hexagon of side length s. (ii) At n > 0, draw a circle with center at each boundary intersection point of the figure of the previous iteration. The pattern seems to be the flower of life except at the central area. See illustration. - Kival Ngaokrajang, Oct 23 2015

Examples

			n=5, d=2n=10, the minimal distance for 10-twins is 12 (see A031928, d=10) the smallest term in A053323. It occurs first between twins of [409,419] and [421,431]; see 409 = A052354(1) = A052376(1) = A052381(5).
		

Crossrefs

Programs

  • Mathematica
    Table[2 n + 4 - 2 Mod[n + 2, 3], {n, 66}] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    vector(200, n, n--; 6*(n\3+1)) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = 6*ceiling(n/3) = 6*ceiling(d/6) = D = D(n).
a(n) = 2n + 4 - 2((n+2) mod 3). - Wesley Ivan Hurt, Jun 30 2013
a(n) = 6*A008620(n-1). - Kival Ngaokrajang, Oct 23 2015

A052381 The smallest initial prime of 2 non-overlapping d-twin primes if the distance between pairs (D) is minimal (see A052380).

Original entry on oeis.org

3, 7, 47, 389, 409, 199, 24749, 3373, 20183, 46703, 19867, 16763, 142811, 14563, 69593, 763271, 276637, 255767, 363989, 383179, 247099, 2130809, 15370423, 3565931, 458069, 9401647, 6314393, 20823437, 9182389, 4911251, 15442121
Offset: 1

Views

Author

Labos Elemer, Mar 13 2000

Keywords

Comments

A prime quadruple (triple), {[p,p+d],[p+D,p+D+d]} is called a "non-overlapping" (disjoint or touching) pair of twins if D = distance >= d = difference "inside" twin.

Examples

			If n=23, d=46, min{D}=48 then the first suitable quadruple of primes is [15370423, 15370469, 15370471, 15370517] with difference pattern [46, 2, 46]; if n=3, d=6, min{D}=6 then the first such triple is [47, 53, 53, 59] = [47, 53, 59] with difference pattern [6, 6].
		

Crossrefs

The first 10 terms here appear as initial terms in A052350-A052359.

Formula

Smallest p so that [p, p+2n], [p+min{D}, p+2n+min{D}] is a quadruple (or triple if d=min{D}) of consecutive primes.

Extensions

Corrected by Jud McCranie, Jan 04 2001
a(11) corrected by Sean A. Irvine, Nov 07 2021

A341512 a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).

Original entry on oeis.org

0, 1, 2, 11, 2, 36, 4, 85, 46, 58, 2, 324, 4, 120, 120, 575, 2, 693, 4, 566, 248, 172, 6, 2340, 94, 270, 788, 1176, 2, 1800, 6, 3661, 348, 358, 336, 5967, 4, 492, 548, 4210, 2, 3744, 4, 1820, 2490, 744, 6, 15372, 380, 2271, 720, 2826, 6, 11304, 392, 8760, 992, 946, 2, 15480, 6, 1232, 5164, 22631, 636, 5904, 4, 3866
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Crossrefs

Cf. Sequences A001359, A029710, A031924 give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

  • Mathematica
    Array[#2 DivisorSigma[1, #1] - #1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 68] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341512(n) = (A341529(n)-A341528(n));

Formula

a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).
For all primes p, a(p) = (q*(p+1)) - (p*(q+1)) = (pq + q) - (pq + p) = q - p = A001223(A000720(p)), where q = nextprime(p) = A003961(p).
And in general, a(p^e) = (q^e * (p^(e+1)-1)/(p-1)) - ((p^e) * (q^(e+1)-1)/(q-1)), where q = A003961(p).
Thus, a(p^2) = (p + 1)*q^2 - p^2*q - p^2,
a(p^3) = (p^2 + p + 1)*q^3 - p^3*q^2 - p^3*q - p^3,
a(p^4) = (p^3 + p^2 + p + 1)*q^4 - p^4*q^3 - p^4*q^2 - p^4*q - p^4,
etc.

A049438 p, p+6 and p+8 are all primes (A046138) but p+2 is not.

Original entry on oeis.org

23, 53, 131, 173, 233, 263, 563, 593, 653, 1013, 1223, 1283, 1601, 1613, 2333, 2543, 2963, 3323, 3533, 3761, 3911, 3923, 4013, 4211, 4253, 4643, 4793, 5003, 5273, 5471, 5843, 5861, 6263, 6353, 6563, 6653, 6863, 7121, 7451, 7481, 7541, 7583
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A031924. - R. J. Mathar, Jun 15 2013

Programs

  • Mathematica
    Select[Prime@ Range[10^3], MatchQ[Boole@ PrimeQ@ {# + 2, # + 6, # + 8}, {0, 1, 1}] &] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    isok(p) = isprime(p) && !isprime(p+2) && isprime(p+6) && isprime(p+8); \\ Michel Marcus, Dec 13 2013

A098974 Primes p such that q-p = 24, where q is the next prime after p.

Original entry on oeis.org

1669, 2179, 4177, 4523, 4759, 5237, 6173, 6397, 6737, 7079, 7369, 7793, 8123, 8329, 9067, 11003, 11633, 11839, 12073, 12119, 13009, 13267, 16033, 16193, 16453, 16763, 16787, 17053, 17683, 17989, 18593, 18637, 19183, 19507, 20483, 22409, 22877, 23227
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 23 2004

Keywords

Comments

Lower prime of a difference of 24 between consecutive primes.
23 successive numbers after prime number p are composite. - Artur Jasinski, Jan 15 2007

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Artur Jasinski, Jan 15 2007 *)

Extensions

Entry revised by N. J. A. Sloane, Feb 13 2007

A126784 Primes p such that q-p = 32, where q is the next prime after p.

Original entry on oeis.org

5591, 10799, 27701, 27851, 33647, 39047, 41081, 41687, 43721, 44417, 45989, 47459, 50789, 52457, 55259, 55547, 61781, 62351, 64817, 66239, 67307, 69959, 73907, 79907, 80567, 82307, 84089, 88037, 94169, 94961, 99191, 99929, 100559, 102611
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Feb 24 2007

Keywords

Comments

Lower prime of a difference of 32 between consecutive primes.

Crossrefs

Programs

  • PARI
    lista(nn) = {p = 2; while (p < nn, q = nextprime(p+1); if (q - p == 32, print1(p, ", ")); p = q;);} \\ Michel Marcus, Jul 17 2013

A160370 Smaller member p of a pair (p,p+6) of consecutive primes in different centuries.

Original entry on oeis.org

1097, 2897, 3797, 4597, 5297, 5897, 9397, 11497, 11897, 12197, 12497, 12697, 15797, 16097, 18797, 19597, 21997, 24097, 24197, 28597, 28697, 29297, 30097, 30197, 30697, 32497, 35597, 36997, 39097, 40897, 41597, 41897, 42397, 45497, 47297
Offset: 1

Views

Author

Ki Punches, May 11 2009

Keywords

Comments

Note that the smaller member of a pair of sexy primes with the same constraint on centuries defines a different sequence, since members of a sexy prime pair do not need to be *consecutive* primes.
The larger member in the pair is obtained by adding 6 to an entry.
Every a(n)+3 is a multiple of 100 such that neither a(n)+2 nor a(n)+4 are primes. It appears that every integer occurs as the difference round((a(n+1)-a(n))/100); all numbers 1..333 occur as these differences for a(n) < 1000000000. - Hartmut F. W. Hoft, May 18 2017

Examples

			30097 + 6 = 30103.
		

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[5000]],2,1],#[[2]]-#[[1]] == 6 && Floor[#[[1]]/100]!=Floor[#[[2]]/100]&]][[1]] (* Harvey P. Dale, Apr 28 2012 *)
    a160370[n_] := Select[Range[97, n, 100], AllTrue[# + {0, 6}, PrimeQ] && NoneTrue[# + {2, 4}, PrimeQ]&]
    a160370[49000] (* data *) (* Hartmut F. W. Hoft, May 18 2017 *)

Formula

{A031924(n): [A031924(n)/100] <> [A031925(n)/100]} where [..]=floor(..).

Extensions

Edited by R. J. Mathar, May 14 2009
Previous Showing 21-30 of 59 results. Next