cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 83 results. Next

A226964 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 6 (mod n).

Original entry on oeis.org

1, 3, 4, 20, 36, 252, 10836
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 6 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -6 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), this sequence (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 6 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-6 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1,3,4 prepended by Max Alekseyev, Aug 26 2013

A226965 Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 7 (mod n).

Original entry on oeis.org

1, 2, 6, 7, 14, 294, 12642
Offset: 1

Views

Author

Keywords

Comments

Also, integers n such that B(n)*n == 7 (mod n), where B(n) is the n-th Bernoulli number, or SUM[prime p, (p-1) divides n] n/p == -7 (mod n). It is easy to see that for n>1, every prime divisor p of n, except p=7, must appear in first power, while p=7 may appear in first or second power. Moreover, the multiset P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This multiset is P = {2, 3, 7, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), this sequence (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 7&]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-7 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Corrected and keywords full,fini added by Max Alekseyev, Aug 25 2013

A226966 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 8 (mod n).

Original entry on oeis.org

1, 16, 48, 336, 14448
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 8 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -8 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), this sequence (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 8 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-8 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 26 2013

A231409 Least k with 1^(k*m) + 2^(k*m) + ... + (k*m)^(k*m) == k (mod k*m) for m in A230311.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 39607528021345872635
Offset: 1

Views

Author

Jonathan Sondow, Nov 30 2013

Keywords

Comments

Least k with A031971(k*m) == k (mod k*m) for m in A230311.
See A031971 and A230311 for more comments and crossrefs.

Examples

			1^m + 2^m + ... + m^m == 1 (mod m) for the first 5 terms m = 1, 2, 6, 42, 1806 of A230311, so a(n) = 1 for n <= 5.
		

Crossrefs

Formula

a(2) = A229303(1), a(3) = A229302(1), a(4) = A229301(1), a(5) = A229300, a(6) = A229312(1).

A121706 a(n) = Sum_{k=1..n-1} k^n.

Original entry on oeis.org

0, 1, 9, 98, 1300, 20515, 376761, 7907396, 186884496, 4914341925, 142364319625, 4505856912854, 154718778284148, 5729082486784839, 227584583172284625, 9654782997596059912, 435659030617933827136, 20836030169620907691465
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006

Keywords

Comments

n^3 divides a(n) for n in A121707.
It appears that p^(3k-1) divides a(p^k) for all integer k > 1 and prime p > 2:
for prime p > 2, p^2 divides a(p), p^5 divides a(p^2) and p^8 divides a(p^3).
Additionally, p^3 divides a(3p) for prime p > 2.
For prime p > 3, p divides a(p+1) and p^3 divides a(2p+1);
for prime p > 5, p divides a(3p+1) and p^3 divides a(4p+1);
for prime p > 7, p divides a(5p+1) and p^3 divides a(6p+1):
It appears that p divides a((2k+1)p+1) for integer k >= 0 and prime p > 2k+3, and p^3 divides a(2kp+1) for integer k > 0 and prime p > 2k+2.
p divides a((p+1)/2) for primes in A002145: primes of the form 4n+3, n >= 1.
p^2 divides a((p+1)/2) for primes in A007522: primes of the form 8n+7, n >= 0.
n*(2*n+1) divides a(2*n+1) for n >= 1. - Franz Vrabec, Dec 20 2020

Crossrefs

Programs

Formula

a(n) = Sum(k^n, k=1..n) - n^n = A031971(n) - A000312(n) for n > 1.
a(n) = zeta(-n) - zeta(-n, n).

Extensions

Edited by M. F. Hasler, Jul 22 2019

A344110 Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0

Views

Author

Mohammad K. Azarian, May 10 2021

Keywords

Comments

T(n, k) is the number of relations from an n-element set into a k-element set, n >= 0, 0 <= k <= n.
T(n,k) is the size of the right principal ideal generated by A where A is an n X n matrix over GF(2) having rank k. The right principal ideal of A contains precisely the matrices whose image is contained in the image of A. - Geoffrey Critzer, Sep 25 2022

Examples

			T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
   1
   1   2
   1   4      16
   1   8      64      512
   1  16     256     4096      65536
   1  32    1024    32768    1048576    33554432
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k), {n, 0, 10}, {k, 0, n}]

Formula

T(n,k) = 2^(n*k).
T(n,k) = Sum_{j=0..k} A288853(n,j)*A022166(n,j). - Geoffrey Critzer, Jan 02 2023

A349886 a(n) = Sum_{k=0..n} k^(k*n).

Original entry on oeis.org

1, 2, 18, 19749, 4295498995, 298024323402930834, 10314425729813391637014599924, 256923578002288684397369021397408936103993, 6277101735598268377660667072561845282166297358613176925573
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[k^(k*n), {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Dec 04 2021 *)
    a[n_] := Sum[If[k == 0, 1, k^(k*n)], {k, 0, n}]; Array[a, 9, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(k*n));
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k^k^2*x^k/(1-k^k*x)))

Formula

G.f.: Sum_{k>=0} k^(k^2) * x^k/(1 - k^k * x).
a(n) ~ n^(n^2). - Vaclav Kotesovec, Dec 04 2021

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022

A191686 a(n) = n^(n-1) - (n-1)^(n-1) - ... - 2^(n-1) - 1^(n-1).

Original entry on oeis.org

1, 1, 4, 28, 271, 3351, 50478, 896848, 18362109, 425695015, 11023082676, 315332380452, 9876127761371, 336120888377743, 12351836713047770, 487443031053702976, 20559664804361256953, 923012267234425940655, 43944912052993796265952, 2211595951039098481159300
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 11 2011

Keywords

Examples

			a(1)=1 (=1^0), a(2)=1 (=2^1-1^1), a(3)=4 (=3^2-2^2-1^2).
		

Crossrefs

Programs

  • Maple
    A191686 := proc(n) n^(n-1)-add( i^(n-1),i=1..n-1) ; end proc:
    seq(A191686(n),n=1..20) ; # R. J. Mathar, Jun 11 2011
  • Mathematica
    Table[n^(n-1)-Total[Range[n-1]^(n-1)],{n,20}] (* Harvey P. Dale, Sep 20 2011 *)

Extensions

Corrected by R. J. Mathar, Jun 11 2011

A226872 1 together with even numbers n >= 2 such that 1^n + 2^n + 3^n + ... + n^n == n/2 (mod n).

Original entry on oeis.org

1, 2, 4, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 82, 86, 88, 92, 94, 98, 104, 106, 112, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is even. Alternatively, the even terms of this sequence can be characterized in any of the following ways: (i) even integers n such that n*B(n) == n/2 (mod n), where B(n) is the n-th Bernulli number; OR (ii) integers n such that gcd(n,A027642(n)) = 2; OR (iii) even integers n such that (p-1) does not divide n for every odd prime p dividing n (cf. A124240). - Max Alekseyev, Sep 05 2013

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[200], Mod[Sum[PowerMod[k, #, #], {k, #}], #] == #/2 &]] (* T. D. Noe, Sep 04 2013 *)
  • PARI
    is(n)=if(n%2,return(n==1));my(f=factor(n)[,1]);for(i=2,#f,if(n%(f[i]-1)==0,return(0)));1 \\ Charles R Greathouse IV, Sep 04 2013
Previous Showing 31-40 of 83 results. Next