cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A097251 Numbers whose set of base 5 digits is {0,4}.

Original entry on oeis.org

0, 4, 20, 24, 100, 104, 120, 124, 500, 504, 520, 524, 600, 604, 620, 624, 2500, 2504, 2520, 2524, 2600, 2604, 2620, 2624, 3000, 3004, 3020, 3024, 3100, 3104, 3120, 3124, 12500, 12504, 12520, 12524, 12600, 12604, 12620, 12624, 13000, 13004, 13020
Offset: 0

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 5 for every i.
The first 2^n terms of the sequence could be obtained using the Cantor-like process for the segment [0,5^n-1]. For example, for n=1 we have [0, {1,2,3},4] such that numbers outside of braces are the first 2 terms of the sequence; for n=2 we have [0, {1,2,3}, 4, {5,...,19}, 20, {21,22,23}, 24] such that the numbers outside of braces are the first 4 terms of the sequence, etc. - Vladimir Shevelev, Dec 17 2012

Crossrefs

Programs

  • Magma
    [n: n in [0..20000] | Set(IntegerToSequence(n, 5)) subset {0, 4}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,4},IntegerDigits[n,5]]=={0,4};Select[Range[0,20000],fQ] (* Vincenzo Librandi, May 25 2012 *)
    FromDigits[#,5]&/@Tuples[{0,4},6] (* Harvey P. Dale, Feb 01 2015 *)
  • Maxima
    a[0]:0$ a[n]:=5*a[floor(n/2)]+2*(1-(-1)^n)$ makelist(a[n], n, 0, 42); /* Bruno Berselli, May 25 2012 */
    
  • PARI
    a(n) = 4*fromdigits(binary(n),5); \\ Kevin Ryde, Jun 03 2020

Formula

a(n) = 4*A033042(n).
a(2n) = 5*a(n), a(2n+1) = a(2n)+4.

A146025 Numbers that can be written in bases 2, 3, 4, and 5 using only the digits 0 and 1.

Original entry on oeis.org

0, 1, 82000
Offset: 1

Views

Author

Daniel Mondot, Oct 26 2008

Keywords

Comments

Originally checked to 2^65520 (or about 3*10^19723) on Nov 07 2008. - Daniel Mondot, Jan 17 2016
Conjectured to be complete. a(4), if it exists, is greater than 10^15. - Charles R Greathouse IV, Apr 06 2012
Checked to 3125 (5^5) base-5 digits in just under 1/2 hour using a minor modification of the PARI program at A230360. Interestingly, with 5 replaced by 9 and the digits 2 and 3 permitted, it appears the complete set is--somewhat coincidental with this--{0, 1, 2, 3, 8281, 8282, 8283}, see A146026. - James G. Merickel, Dec 01 2013
Checked to 11 million decimal digits in 1 week using an algorithm that, upon finding that the current guess has non-{0,1} digits in a particular base, increases the guess to only have {0,1} digits in that base. C code in links. - Alex P. Klinkhamer, Aug 29 2015
It is a plausible conjecture that there are no more terms, but this has not been proved. - N. J. A. Sloane, Feb 06 2016

Examples

			82000 = 10100000001010000 (2) = 11011111001 (3) = 110001100 (4) = 10111000 (5).
		

Crossrefs

Intersection of A005836, A000695, and A033042.
Cf. A258981 (bases 2,3,4), A258107 (bases 2..n).

Programs

  • Mathematica
    f[n_] := Total[Total@ Drop[RotateRight[DigitCount[n, #]], 2] & /@ Range[3, 5]]; Select[Range[0, 100000], f@ # == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    is(n)=vecmax(digits(n,5))<2 && vecmax(digits(n,4))<2 && vecmax(digits(n,3))<2 \\ Charles R Greathouse IV, Aug 31 2015

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009
Search limit extended to astronomical odds by James G. Merickel, Dec 03 2013
Search limit increased again with example code by Alex P. Klinkhamer, Aug 29 2015
Removed keywords "fini" and "full", since it is only a conjecture that there are no further terms. - N. J. A. Sloane, Feb 06 2016

A077719 Primes which can be expressed as sum of distinct powers of 5.

Original entry on oeis.org

5, 31, 131, 151, 631, 751, 3251, 3881, 16381, 19381, 19501, 19531, 78781, 78901, 81281, 81401, 81901, 82031, 93901, 94531, 97001, 97501, 97651, 390751, 390781, 393901, 394501, 406381, 468781, 469501, 471901, 472631, 484531, 485131, 487651, 1953151, 1953901
Offset: 1

Views

Author

Amarnath Murthy, Nov 19 2002

Keywords

Comments

Primes whose base 5 representation contains only zeros and 1's.

Crossrefs

Programs

  • Python
    from sympy import isprime
    def aupton(terms):
      k, alst = 0, []
      while len(alst) < terms:
        k += 1
        t = sum(5**i*int(di) for i, di in enumerate((bin(k)[2:])[::-1]))
        if isprime(t): alst.append(t)
      return alst
    print(aupton(37)) # Michael S. Branicky, May 31 2021

Extensions

More terms from Sascha Kurz, Jan 03 2003
a(36) and beyond from Michael S. Branicky, May 31 2021

A033048 Sums of distinct powers of 12.

Original entry on oeis.org

0, 1, 12, 13, 144, 145, 156, 157, 1728, 1729, 1740, 1741, 1872, 1873, 1884, 1885, 20736, 20737, 20748, 20749, 20880, 20881, 20892, 20893, 22464, 22465, 22476, 22477, 22608, 22609, 22620, 22621, 248832, 248833, 248844, 248845, 248976
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-12 digits greater than 1.

Crossrefs

Subsequence of A102487.
Row 11 of array A104257.

Programs

  • Haskell
    import Data.List (unfoldr)
    a033048 n = a033048_list !! (n-1)
    a033048_list = filter (all (< 2) . unfoldr (\x ->
       if x == 0 then Nothing else Just $ swap $ divMod x 12)) [1..]
    -- Reinhard Zumkeller, Apr 17 2011
  • Mathematica
    With[{k = 12}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
  • PARI
    {maxn=37;
    for(vv=0,maxn,
    bvv=binary(vv);
    ll=length(bvv);texp=0;btod=0;
    forstep(i=ll,1,-1,btod=btod+bvv[i]*12^texp;texp++);
    print1(btod,", "))}
    \\ Douglas Latimer, Apr 16 2012
    
  • PARI
    a(n)=fromdigits(binary(n),12) \\ Charles R Greathouse IV, Jan 11 2017
    

Formula

a(n) = Sum_{i=0..m} d(i)*12^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097258(n)/11.
a(2n) = 12*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(k) = 12^k = A001021(k). - Philippe Deléham, Oct 19 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 12^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A033047 Sums of distinct powers of 11.

Original entry on oeis.org

0, 1, 11, 12, 121, 122, 132, 133, 1331, 1332, 1342, 1343, 1452, 1453, 1463, 1464, 14641, 14642, 14652, 14653, 14762, 14763, 14773, 14774, 15972, 15973, 15983, 15984, 16093, 16094, 16104, 16105, 161051, 161052, 161062, 161063, 161172
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-11 digits greater than 1.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011

Crossrefs

Row 10 of array A104257.

Programs

  • Mathematica
    With[{k = 11}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
  • PARI
    {for(vv=0,35,
    bvv=binary(vv);
    texp=0;btb=0;
    forstep(i=length(bvv),1,-1,btb=btb+bvv[i]*11^texp;texp++);
    print1(btb,", "))} \\ Douglas Latimer, May 12 2012
    
  • PARI
    a(n)=fromdigits(binary(n),11) \\ Charles R Greathouse IV, Jan 11 2017

Formula

a(n) = Sum_{i=0..m} d(i)*11^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097257(n)/10.
a(2n) = 11*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*11^k. - Philippe Deléham, Oct 17 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 11^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A033049 Sums of distinct powers of 13.

Original entry on oeis.org

0, 1, 13, 14, 169, 170, 182, 183, 2197, 2198, 2210, 2211, 2366, 2367, 2379, 2380, 28561, 28562, 28574, 28575, 28730, 28731, 28743, 28744, 30758, 30759, 30771, 30772, 30927, 30928, 30940, 30941, 371293, 371294, 371306, 371307, 371462
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-13 digits greater than 1.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011

Crossrefs

Row 12 of array A104257.

Programs

  • Mathematica
    With[{k = 13}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
  • PARI
    A033049(n,b=13)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016

Formula

a(n) = Sum_{i=0..m} d(i)*13^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097259(n)/12.
a(2n) = 13*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*13^k. - Philippe Deléham, Oct 17 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 13^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A033051 Numbers whose set of base 15 digits is {0,1}.

Original entry on oeis.org

0, 1, 15, 16, 225, 226, 240, 241, 3375, 3376, 3390, 3391, 3600, 3601, 3615, 3616, 50625, 50626, 50640, 50641, 50850, 50851, 50865, 50866, 54000, 54001, 54015, 54016, 54225, 54226, 54240, 54241, 759375, 759376, 759390, 759391, 759600
Offset: 0

Views

Author

Keywords

Comments

Sums of distinct powers of 15.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011.

Crossrefs

Row 14 of array A104257.

Programs

  • Mathematica
    With[{k = 15}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
    FromDigits[#,15]&/@Tuples[{0,1},6] (* Harvey P. Dale, Sep 15 2024 *)
  • PARI
    A033051(n, b=15)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016

Formula

a(n) = Sum_{i=0..m} d(i)*15^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097261(n)/14.
a(2n) = 15*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*15^k. - Philippe Deléham, Oct 17 2011.
G.f.: (1/(1 - x))*Sum_{k>=0} 15^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A277548 Numbers k such that k/5^m == 4 (mod 5), where 5^m is the greatest power of 5 that divides k.

Original entry on oeis.org

4, 9, 14, 19, 20, 24, 29, 34, 39, 44, 45, 49, 54, 59, 64, 69, 70, 74, 79, 84, 89, 94, 95, 99, 100, 104, 109, 114, 119, 120, 124, 129, 134, 139, 144, 145, 149, 154, 159, 164, 169, 170, 174, 179, 184, 189, 194, 195, 199, 204, 209, 214, 219, 220, 224, 225, 229
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2016

Keywords

Comments

Positions of 4 in A277543. Numbers that have 4 as their rightmost nonzero digit when written in base 5.
This is one sequence in a 4-way splitting of the positive integers; the other three are indicated in the Mathematica program. All these sequences have the same density of 1/4.
Is there some n with a 3 or a 4 in base 5 such that a(n) = 4n + 1? - David A. Corneth, Oct 23 2016

Crossrefs

Programs

  • Mathematica
    z = 200; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[5, 1] (* A277550 *)
    p[5, 2] (* A277551 *)
    p[5, 3] (* A277555 *)
    p[5, 4] (* A277548 *)
  • PARI
    isok(n) = n/5^valuation(n, 5) % 5 == 4; \\ Michel Marcus, Oct 21 2016

Formula

Conjecture: a(n) = 4*n if and only if n is in A033042. - David A. Corneth, Oct 23 2016

A033050 Numbers whose set of base 14 digits is {0,1}.

Original entry on oeis.org

0, 1, 14, 15, 196, 197, 210, 211, 2744, 2745, 2758, 2759, 2940, 2941, 2954, 2955, 38416, 38417, 38430, 38431, 38612, 38613, 38626, 38627, 41160, 41161, 41174, 41175, 41356, 41357, 41370, 41371, 537824, 537825, 537838, 537839, 538020
Offset: 0

Views

Author

Keywords

Comments

Sums of distinct powers of 14.
The base-14 digits may comprise zero, one, or both. - Harvey P. Dale, May 12 2014

Crossrefs

Row 13 of array A104257.

Programs

  • Mathematica
    Select[Range[0,540000],Max[IntegerDigits[#,14]]<2&] (* Harvey P. Dale, May 12 2014 *)
    FromDigits[#,14]&/@Tuples[{0,1},6] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    A033050(n,b=14)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016

Formula

a(n) = Sum_{i=0..m} d(i)*14^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097260(n)/13.
a(2n) = 14*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*14^k. - Philippe Deléham, Oct 20 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 14^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A063012 Sum of distinct powers of 20; i.e., numbers with digits in {0,1} base 20; i.e., write n in base 2 and read as if written in base 20.

Original entry on oeis.org

0, 1, 20, 21, 400, 401, 420, 421, 8000, 8001, 8020, 8021, 8400, 8401, 8420, 8421, 160000, 160001, 160020, 160021, 160400, 160401, 160420, 160421, 168000, 168001, 168020, 168021, 168400, 168401, 168420, 168421, 3200000, 3200001, 3200020, 3200021, 3200400, 3200401
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2001

Keywords

Examples

			a(5) = 401 since 5 written in base 2 is 101 so a(5) = 1*20^2 + 0*20^1 + 1*20^0 = 400 + 0 + 1 = 401.
		

Crossrefs

A063013 is similar in a different way.

Programs

  • Maple
    a:= proc(n) `if`(n<2, n, irem(n, 2, 'r')+20*a(r)) end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Apr 04 2025
  • Mathematica
    Table[FromDigits[IntegerDigits[n,2],20],{n,0,40}] (* Harvey P. Dale, Jul 21 2014 *)
  • PARI
    baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
    baseI(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) }
    { for (n=0, 1000, write("b063012.txt", n, " ", baseI(baseE(n, 2), 20)) ) } \\ Harry J. Smith, Aug 15 2009
    
  • Python
    def A063012(n): return int(bin(n)[2:],20) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = a(n-2^floor(log_2(n))) + 20^floor(log_2(n)). a(2n) = 20*a(n); a(2n+1) = a(2n)+1 = 20*a(n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*A009964(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 20^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010
Previous Showing 21-30 of 37 results. Next