cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 158 results. Next

A007908 Triangle of the gods: to get a(n), concatenate the decimal numbers 1,2,3,...,n.

Original entry on oeis.org

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101112, 12345678910111213, 1234567891011121314, 123456789101112131415, 12345678910111213141516, 1234567891011121314151617, 123456789101112131415161718
Offset: 1

Views

Author

R. Muller

Keywords

Comments

For the name "triangle of the gods" see Pickover link. - N. J. A. Sloane, Dec 15 2019
Number of digits: A058183(n) = A055642(a(n)); sums of digits: A037123(n) = A007953(a(n)). - Reinhard Zumkeller, Aug 10 2010
Charles Nicol and John Selfridge ask if there are infinitely many primes in this sequence - see the Guy reference. - Charles R Greathouse IV, Dec 14 2011
Stephan finds no primes in the first 839 terms. I checked that there are no primes in the first 5000 terms. Heuristically there are infinitely many, about 0.5 log log n through the n-th term. - Charles R Greathouse IV, Sep 19 2012 [Expanded search to 20000 without finding any primes. - Charles R Greathouse IV, Apr 17 2014] [Independent search extended to 64000 terms without finding any primes. - Dana Jacobsen, Apr 25 2014]
Elementary congruence arguments show that primes can occur only at indices congruent to 1, 7, 13, or 19 mod 30. - Roderick MacPhee, Oct 05 2015
A note on heuristics: I wrote a quick program to count primes in sequences which are like A007908 but start at k instead of 1. I ran this for k = 1 to 100 and counted the primes up to 1000 (1000 possibilities for k = 1, 999 for k = 2, etc. up to 901 for k = 100). I then compared this to the expected count which is 0 if the number N is divisible by 2, 3, or 5 and 15/(4 log N) otherwise. (If N < 43 I counted the number as 1 instead.) k = 1 has 1.788 expected primes but only 0 actual (of course). k = 2 has 2.268 expected but 4 actual (see A262571, A089987). In total the expectation is 111.07 and the actual count is 110, well within the expected error of +/- 10.5. - Charles R Greathouse IV, Sep 28 2015
Early bird numbers for n > 1: a(2) = A116700(1) = 12; a(3) = A116700(52) = 123; a(4) = A116700(725) = 1234; a(5) = A116700(8074) = 12345; a(6) = A116700(85846) = 123456. - Reinhard Zumkeller, Dec 13 2012
For n < 10^6, a(n)/A000217(n) is an integer for n = 1, 2, and 5. The integers are 1, 4, and 823 (a prime), respectively. - Derek Orr, Sep 04 2014; Max Alekseyev, Sep 30 2015
In order to be a prime, a(n) must end in a digit 1, 3, 7 or 9, so only 4 among 10 consecutive values can be prime. (But a(64000) already has A058183(64000) > 300000 digits.) Also, a(64001) and a(64011) and more generally a(64001+10k) is divisible by 3 unless k == 2 (mod 3), but for k = 2, 5, 8, ... 23 these are divisible by small primes < 999. a(64261) is the first serious candidate in this subsequence. - M. F. Hasler, Sep 30 2015
There are no primes in the first 10^5 terms. - Max Alekseyev, Oct 03 2015; Oct 11 2015
There are no primes in the first 200000 terms. - Serge Batalov, Oct 24 2015
There is a distributed project for continued search, using PRPNet/PFGW software; see the Mersenne Forum link below. - Serge Batalov, Oct 18 2015
It appears that the Mersenne Forum search reached n = 344869 without finding a prime, and was then abandoned. It would be nice if someone could recover the final version of that link from the Wayback machine - the Great Smarandache PRPrime search, http://99.121.249.54:1200 - so that we have a record of how far they searched. - N. J. A. Sloane, Apr 09 2018
The web page https://www.mersenneforum.org/showthread.php?t=20527&page=9 has a comment from Serge Balatov that seems to say that the search reached 10^6 without finding a prime. It would be nice to have this confirmed, and to get more details about how it was done. - N. J. A. Sloane, Dec 15 2019
The expected number of primes among the first million terms is about 0.6. - Ernst W. Mayer, Oct 09 2015
A few semiprimes exist among the early terms, but then become scarce: see A046461. For the base-2 analog of this sequence (A047778), there is a 15-decimal digit prime, but Hans Havermann has shown that the second prime would have more than 91000 digits. - N. J. A. Sloane, Oct 08 2015

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3, page 15, of 3rd edition, Springer, 2010.

Crossrefs

See A057137 for another version.
Cf. A033307, A053064, A000422 (left concatenations)
If we concatenate 1 through n but leave out k, we get sequences A262571 (leave out 1) through A262582 (leave out 12), etc., and again we can ask for the smallest prime in each sequence. See A262300 for a summary of these results. Primes seem to exist if we search far enough. - N. J. A. Sloane, Sep 29 2015
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: this sequence, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447. - Dylan Hamilton, Aug 11 2010
Entries that give the primes in sequences of this type: A089987, A262298, A262300, A262552, A262555.
For semiprimes see A046461.
See also A007376 (the almost-natural numbers), A071620 (primes in that sequence).
See also A033307 (the Champernowne constant) and A176942 (the Champernowne primes). A262043 is a variant of the present sequence.
A002782 is an amusing cousin of this sequence.
Least prime factor: A075019.

Programs

  • Haskell
    a007908 = read . concatMap show . enumFromTo 1 :: Integer -> Integer
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [1..n]])): n in [1..17]];  // Bruno Berselli, May 27 2011
    
  • Maple
    A055642 := proc(n) max(1, ilog10(n)+1) ; end: A007908 := proc(n) if n = 1 then 1; else A007908(n-1)*10^A055642(n)+n ; fi ; end: seq(A007908(n),n=1..12) ; # R. J. Mathar, May 31 2008
    # second Maple program:
    a:= proc(n) a(n):= `if`(n=0, 0, parse(cat(a(n-1), n))) end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 20}] (* Alonso del Arte, Sep 19 2012 *)
    FoldList[#2 + #1 10^IntegerLength[#2] &, Range[20]] (* Eric W. Weisstein, Nov 06 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Flatten /@ Rest[FoldList[List, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Rest[FoldList[Append, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
  • Maxima
    a[1]:1$ a[n]:=a[n-1]*10^floor(log(10*n)/log(10))+n$ makelist(a[n],n,1,17);  /* Bruno Berselli, May 27 2011 */
    
  • PARI
    a(n)=my(s="");for(k=1,n,s=Str(s,k));eval(s) \\ Charles R Greathouse IV, Sep 19 2012
    
  • PARI
    A007908(n,a=0)={for(d=1,#Str(n),my(t=10^d);for(k=t\10,min(t-1,n),a=a*t+k));a} \\ M. F. Hasler, Sep 30 2015
    
  • Python
    def a(n): return int("".join(map(str, range(1, n+1))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 12 2021
    
  • Python
    from functools import reduce
    def A007908(n): return reduce(lambda i,j:i*10**len(str(j))+j,range(1,n+1)) # Chai Wah Wu, Feb 27 2023

Formula

a(n) = n + a(n-1)*10^A055642(n). - R. J. Mathar, May 31 2008
a(n) = floor(C*10^(A058183(n))) with C = A033307. - José de Jesús Camacho Medina, Aug 19 2015

Extensions

Name edited by N. J. A. Sloane, Dec 15 2019

A007376 The almost-natural numbers: write n in base 10 and juxtapose digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7
Offset: 0

Views

Author

Keywords

Comments

Also called the Barbier infinite word.
This is an example of a non-morphic sequence.
a(n) = A162711(n,1); A136414(n) = 10*a(n) + a(n+1). - Reinhard Zumkeller, Jul 11 2009
a(A031287(n)) = 0, a(A031288(n)) = 1, a(A031289(n)) = 2, a(A031290(n)) = 3, a(A031291(n)) = 4, a(A031292(n)) = 5, a(A031293(n)) = 6, a(A031294(n)) = 7, a(A031295(n)) = 8, a(A031296(n)) = 9. - Reinhard Zumkeller, Jul 28 2011
May be regarded as an irregular table in which the n-th row lists the digits of n. - Jason Kimberley, Dec 07 2012
The digits of the integer n start at index A117804(n). The digit a(n) at index n belongs to the number A100470(n). - M. F. Hasler, Oct 23 2019
See also the Copeland-Erdős constant A033308, equivalent using primes instead of all numbers. - M. F. Hasler, Oct 24 2019
Decimal expansion of Sum_{k>=1} k/10^(A058183(k) + 1). - Stefano Spezia, Nov 30 2022

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 114, 336.
  • R. Honsberger, Mathematical Chestnuts from Around the World, MAA, 2001; see p. 163.
  • M. Kraitchik, Mathematical Recreations. Dover, NY, 2nd ed., 1953, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Considered as a sequence of digits, this is the same as the decimal expansion of the Champernowne constant, A033307. See that entry for a formula for a(n), further references, etc.
Cf. A054632 (partial sums), A023103.
Cf. A193428, A256100, A001477 (the nonnegative integers), A117804, A100470.
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), this sequence and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Row lengths in A055642.
For primes here see A071620. See A007908 for a very similar sequence.

Programs

  • Haskell
    a007376 n = a007376_list !! (n-1)
    a007376_list = concatMap (map (read . return) . show) [0..] :: [Int]
    -- Reinhard Zumkeller, Nov 11 2013, Dec 17 2011, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[0..31]]; // Jason Kimberley, Dec 07 2012
    
  • Maple
    c:=proc(x,y) local s: s:=proc(m) nops(convert(m,base,10)) end: if y=0 then 10*x else x*10^s(y)+y: fi end: b:=proc(n) local nn: nn:=convert(n,base,10):[seq(nn[nops(nn)+1-i],i=1..nops(nn))] end: A:=0: for n from 1 to 75 do A:=c(A,n) od: b(A); # c concatenates 2 numbers while b converts a number to the sequence of its digits - Emeric Deutsch, Jul 27 2006
    #alternative
    A007376 := proc(n) option remember ; local aprev, dOld,N ; if n <=9 then RETURN([n,n,1]) ; else aprev := A007376(n-1) ; dOld := op(3,aprev) ; N := op(2,aprev) ; if dOld < A055642(N) then RETURN([op(-dOld-1,convert(N,base,10)),N,dOld+1]) ; else RETURN([op(-1,convert(N+1,base,10)),N+1,1]) ; fi ; fi ; end: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten[ IntegerDigits /@ Range@ 57] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* updated Jun 29 2014 *)
    With[{nn=120},RealDigits[N[ChampernowneNumber[],nn],10,nn]][[1]] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    for(n=0,90,v=digits(n);for(i=1,#v,print1(v[i]", "))) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    apply( A007376(n)={for(k=1,n, k*10^k>n&& return(digits(n\k)[n%k+1]); n+=10^k)}, [0..200]) \\ M. F. Hasler, Nov 03 2019
    
  • Python
    A007376_list = [int(d) for n in range(10**2) for d in str(n)] # Chai Wah Wu, Feb 04 2015

Extensions

Extended to a(0) = 0 by M. F. Hasler, Oct 23 2019

A030190 Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

a(A003607(n)) = 0 and for n > 0: a(A030303(n)) = 1. - Reinhard Zumkeller, Dec 11 2011
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020

Examples

			As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
a(n) = T(A030530(n), A083652(A030530(n))-n-1), T as defined in A083651, a(A083652(k))=1.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
For run lengths see A056062; see also A318924.
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.

Programs

  • Haskell
    import Data.List (unfoldr)
    a030190 n = a030190_list !! n
    a030190_list = concatMap reverse a030308_tabf
    -- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v, Mar 08 2005 *)
    First[RealDigits[ChampernowneNumber[2], 2, 100, 0]] (* Paolo Xausa, Jun 16 2024 *)
  • PARI
    A030190_row(n)=if(n,binary(n),[0]) \\ M. F. Hasler, Oct 12 2020
    
  • Python
    from itertools import count, islice
    def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:])
    A030190_list = list(islice(A030190_gen(),30)) # Chai Wah Wu, Jan 07 2022

A030302 Write n in base 2 and juxtapose; irregular table in which row n lists the binary expansion of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
A word that is recurrent, but neither morphic nor uniformly recurrent. - N. J. A. Sloane, Jul 14 2018
See A030303 for the indices of 1's (so this is the characteristic function of A030303), with first differences (i.e., run lengths of 0's, increased by 1, with two consecutive 1's delimiting a run of zero 0's) given by A066099. - M. F. Hasler, Oct 12 2020

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Essentially the same as A007088 and A030190. Cf. A030303, A007088.
Tables in which the n-th row lists the base b digits of n: A030190 and this sequence (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). [Jason Kimberley, Dec 06 2012]
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Magma
    &cat[Reverse(IntegerToSequence(n,2)): n in [1..31]]; // Jason Kimberley, Mar 02 2012
    
  • Maple
    A030302 := proc(n) local i,t1,t2; t1:=convert(n,base,2); t2:=nops(t1); [seq(t1[t2+1-i],i=1..t2)]; end; # N. J. A. Sloane, Apr 08 2021
  • Mathematica
    i[n_] := Ceiling[FullSimplify[ProductLog[Log[2]/2 (n - 1)]/Log[2] + 1]]; a[n_] := Mod[Floor[2^(Mod[n + 2^i[n] - 2, i[n]] - i[n] + 1) Ceiling[(n + 2^i[n] - 1)/i[n] - 1]], 2]; (* David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007 *)
    Join @@ Table[ IntegerDigits[i, 2], {i, 1, 40}] (* Olivier Gérard, Mar 28 2011 *)
    Flatten@ IntegerDigits[ Range@ 25, 2] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 2] &, 105] (* Robert G. Wilson v, Jun 29 2014 *)
  • Python
    from itertools import count, islice
    def A030302_gen(): # generator of terms
        return (int(d) for n in count(1) for d in bin(n)[2:])
    A030302_list = list(islice(A030302_gen(),30)) # Chai Wah Wu, Feb 18 2022

Formula

a(n) = (floor(2^(((n + 2^i - 2) mod i) - i + 1) * ceiling((n + 2^i - 1)/i - 1))) mod 2 where i = ceiling( W(log(2)/2 (n - 1))/log(2) + 1 ) and W denotes the principal branch of the Lambert W function. See also Mathematica code. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007

A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes.

Original entry on oeis.org

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The number .23571113171923.... was proved normal in base 10 by Copeland and Erdős but is not known to be normal in other bases. - Jeffrey Shallit, Mar 14 2008
Could be read (with indices 1, 2, ...) as irregular table whose n-th row lists the A097944(n) digits of the n-th prime A000040(n). - M. F. Hasler, Oct 25 2019
Named after the American mathematician Arthur Herbert Copeland (1898-1970) and the Hungarian mathematician Paul Erdős (1913-1996). - Amiram Eldar, May 29 2021
This constant is irrational but it is not (yet) known to be transcendental. - Charles R Greathouse IV, Feb 03 2025

Examples

			0.235711131719232931374143475359616771737983899710110310710911312...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • Glyn Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 149-166.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

Crossrefs

Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).
Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).
Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).
Cf. A066747 and A191232: binary Copeland-Erdős constant: decimals and binary digits.
See also A338072.

Programs

  • Haskell
    a033308 n = a033308_list !! (n-1)
    a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int]
    -- Reinhard Zumkeller, Mar 03 2014
  • Mathematica
    N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)
  • PARI
    default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    
  • PARI
    concat( apply( {row(n)=digits(prime(n))},  [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019
    

Formula

Equals Sum_{n>=1} prime(n)*10^(-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006
Equals Sum_{i>=1} (p_i * 10^(-(Sum_{j=1..i} 1 + floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( i + Sum_{j=1..i} floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( Sum_{j=1..i} ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014

A030548 Write n in base 6 and juxtapose.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 1, 0, 4, 1, 0, 5, 1, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Base-6 analog of what in base 7 is A030998, in base 10 is A007376. In general, the Barbier infinite word base n (in this case, 6). - Jonathan Vos Post, May 13 2007
An irregular table in which the n-th row lists the base-6 digits of n. - Jason Kimberley, Dec 07 2012
The base-6 Champernowne constant: It is normal in base 6. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), this sequence (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A030567 for the same table with reversed rows.

Programs

  • Magma
    &cat[Reverse(IntegerToSequence(n,6)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten@ IntegerDigits[ Range@ 50, 6] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 6] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A030548_gen(): return chain.from_iterable(digits(m, 6)[1:] for m in count(1))
    A030548_list = list(islice(A030548_gen(), 30)) # Chai Wah Wu, Jan 07 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007

A031219 Write n in base 5 and juxtapose.

Original entry on oeis.org

1, 2, 3, 4, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 1, 0, 4, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1
Offset: 1

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-5 digits of n. - Jason Kimberley, Dec 07 2012
The base-5 Champernowne constant: it is normal in base 5. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), this sequence (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Magma
    &cat[Reverse(IntegerToSequence(n,5)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten@ IntegerDigits[ Range@ 40, 5] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 5] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A031219_gen(): return chain.from_iterable(digits(m, 5)[1:] for m in count(1))
    A031219_list = list(islice(A031219_gen(), 30)) # Chai Wah Wu, Jan 07 2022

A003137 Write n in base 3 and juxtapose.

Original entry on oeis.org

1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-3 digits of n, see A007089. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Examples

			1,
2,
1,0,
1,1,
1,2,
2,0,
2,1,
2,2,
1,0,0,
1,0,1,.... _R. J. Mathar_, Aug 16 2021
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), this sequence and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A077771, A007089.

Programs

  • Haskell
    a003137 n k = a003137_tabf !! (n-1) !! k
    a003137_row n = a003137_tabf !! (n-1)
    a003137_tabf = map reverse $ tail a030341_tabf
    a003137_list = concat a003137_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten@ IntegerDigits[ Range@ 40, 3] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 3] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import digits
    def A003137_gen(): return (d for m in count(1) for d in digits(m,3)[1:])
    A003137_list = list(islice(A003137_gen(),30)) # Chai Wah Wu, Jan 07 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000

A030373 Write n in base 4 and juxtapose.

Original entry on oeis.org

1, 2, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 3, 0, 1, 3, 1, 1, 3, 2, 1, 3, 3, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 3, 2, 1, 0
Offset: 1

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-4 digits of n. - Jason Kimberley, Nov 26 2012
The base-4 Champernowne constant: it is normal in base 4. - Jason Kimberley, Nov 26 2012

Examples

			1;
2;
3;
1,0;
1,1;
1,2;
1,3;
2,0;
2,1;
2,2;
...
3,3;
1,0,0;
1,0,1;
1,0,2;
1,0,3;
1,1,0; ....
		

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), this sequence (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Magma
    &cat[Reverse(IntegerToSequence(n,4)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[IntegerDigits[Range[40],4]] (* Harvey P. Dale, Aug 23 2011 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A030373_gen(): return chain.from_iterable(digits(m, 4)[1:] for m in count(1))
    A030373_list = list(islice(A030373_gen(), 30)) # Chai Wah Wu, Jan 07 2022

A031076 Write n in base 9 and juxtapose.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4
Offset: 1

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-9 digits of n. - Jason Kimberley, Dec 07 2012
The base-9 Champernowne constant: it is normal in base 9. - Jason Kimberley, Dec 07 2012

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), this sequence (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Haskell
    a031076 n = a031076_list !! (n-1)
    a031076_list = concat $ map reverse $ tail a031087_tabf
    -- Reinhard Zumkeller, Jul 07 2015
    
  • Magma
    &cat[Reverse(IntegerToSequence(n,9)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten@ IntegerDigits[ Range@ 55, 9] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 9] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
  • Python
    from itertools import count, chain, islice
    from sympy.ntheory.factor_ import digits
    def A031076_gen(): return chain.from_iterable(digits(m,9)[1:] for m in count(1))
    A031076_list = list(islice(A031076_gen(),30)) # Chai Wah Wu, Jan 07 2022
Previous Showing 21-30 of 158 results. Next