cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A093381 Expansion of (1 - 2*x - 3*x^2 - 4*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).

Original entry on oeis.org

1, 8, 42, 186, 766, 3058, 12062, 47426, 186606, 735858, 2909182, 11528866, 45781646, 182104658, 725311902, 2891845506, 11539011886, 46070609458, 184025468222, 735329653346, 2938999333326, 11749034250258, 46975237266142
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Second binomial transform of A093380.

Crossrefs

Cf. A033484.

Programs

  • Magma
    [4/3-5*2^n+2*3^n+8*4^n/3: n in [0..30]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    CoefficientList[Series[(1-2x-3x^2-4x^3)/((1-x)(1-2x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{10,-35,50,-24},{1,8,42,186},30] (* Harvey P. Dale, May 29 2013 *)

Formula

a(n) = 4/3 - 5*2^n + 2*3^n + 8*4^n/3;
a(n) = 2*A000244(n) - 5*A000079(n) + 4*A001045(2n+1).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4), n > 3. - Harvey P. Dale, May 29 2013

A130452 Triangle read by rows: A097806 * A130321 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 12, 6, 3, 1, 24, 12, 6, 3, 1, 48, 24, 12, 6, 3, 1, 96, 48, 24, 12, 6, 3, 1, 192, 96, 48, 24, 12, 6, 3, 1, 384, 192, 96, 48, 24, 12, 6, 3, 1, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1, 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, May 26 2007

Keywords

Comments

Row sums = A033484: (1, 4, 10, 22, 46, 94, 190, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   6,  3,  1;
  12,  6,  3,  1;
  24, 12,  6,  3,  1;
  48, 24, 12,  6,  3,  1;
  ...
		

Crossrefs

Formula

A097806 * A130321 as infinite lower triangular matrices. A097806 = the pairwise operator, A130321 = [1; 2,1; 4,2,1; ...]. Triangle, A003945 (1, 3, 6, 12, 24, 48, ...) in every column.

Extensions

a(28) = 1 inserted and more terms from Georg Fischer, May 29 2023

A133093 A007318 * A097806 * A133080.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 10, 6, 5, 1, 15, 10, 15, 5, 1, 21, 15, 35, 15, 7, 1, 28, 21, 70, 35, 28, 7, 1, 36, 28, 126, 70, 84, 28, 9, 1, 45, 36, 210, 126, 210, 84, 45, 9, 1, 55, 45, 330, 210, 462, 210, 165, 45, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 09 2007

Keywords

Comments

Row sums = A033484: (1, 4, 10, 22, 46, 94, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   6,  3,  1;
  10,  6,  5,  1;
  15, 10, 15,  5,  1;
  21, 15, 35, 15,  7,  1;
  28, 21, 70, 35, 28,  7,  1;
  ...
		

Crossrefs

Cf. A133080, A097806, A033484. Duplicate of A131110.

Formula

A007318 * A097806 * A133080 as infinite lower triangular matrices.
Binomial transform of an infinite lower triangular matrix with (1,1,1,...) in the main diagonal, (2,1,2,1,...) in the subdiagonal and (1,0,1,0,...) in the subsubdiagonal.

A358125 Triangle read by rows: T(n, k) = 2^n - 2^(n-k-1) - 2^k, 0 <= k <= n-1.

Original entry on oeis.org

0, 1, 1, 3, 4, 3, 7, 10, 10, 7, 15, 22, 24, 22, 15, 31, 46, 52, 52, 46, 31, 63, 94, 108, 112, 108, 94, 63, 127, 190, 220, 232, 232, 220, 190, 127, 255, 382, 444, 472, 480, 472, 444, 382, 255, 511, 766, 892, 952, 976, 976, 952, 892, 766, 511, 1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023
Offset: 1

Views

Author

Keywords

Comments

T(n, k) is the expanded number of player-reduced static games within an n-player two-strategy game scenario in which one player (the "standpoint") faces a specific combination of other players' individual strategies with the possibility of anti-coordination between them -- the total number of such combinations is 2^(n-1). The value of k represents the number of other players who (are expected to) agree on one of the two strategies in S, while the other n-k-1 choose the other strategy; the standpoint player is not included.

Examples

			Triangle begins:
  0;
  1,     1;
  3,     4,    3;
  7,    10,   10,    7;
  15,   22,   24,   22,   15;
  31,   46,   52,   52,   46,   31;
  63,   94,  108,  112,  108,   94,   63;
 127,  190,  220,  232,  232,  220,  190,  127;
 255,  382,  444,  472,  480,  472,  444,  382,  255;
 511,  766,  892,  952,  976,  976,  952,  892,  766,  511;
1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023;
2047, 3070, 3580, 3832, 3952, 4000, 4000, 3952, 3832, 3580, 3070, 2047;
  ...
		

Crossrefs

Column k=0 gives A000225(n-1).
Column k=1 gives A033484(n-2).
Column k=2 gives A053208(n-3).

Programs

  • Maple
    T := n -> seq(2^n - 2^(n - k - 1) - 2^k, k = 0 .. n - 1);
    seq(T(n), n=1..12);
  • Mathematica
    T[n_, k_] := 2^n - 2^(n - k - 1) - 2^k; Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, Dec 20 2022 *)

Formula

T(n, k) = 2^n - 2^(n-k-1) - 2^k.
Sum_{k=0..n-1} T(n,k)*binomial(n-1,k) = 2*A005061(n-1)

A369491 a(n) = n! * [x^n] (2*x - 4*exp(x) + 3*exp(2*x) + 3) / 2.

Original entry on oeis.org

1, 2, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470, 6442450942, 12884901886, 25769803774
Offset: 0

Views

Author

Peter Luschny, Jan 24 2024

Keywords

Crossrefs

Cf. A033484 (similar, 'missing' 2).

Programs

  • Maple
    gf := ((x + 1)*(2*x^2 - 2*x + 1))/((2*x - 1)*(x - 1)):
    ser := series(gf, x, 40): seq(coeff(ser, x, n), n = 0..34);
    a := proc(n) option remember; ifelse(n < 4, [1, 2, 4, 10][n+1],
    3*a(n - 1) - 2*a(n - 2)) end: seq(a(n), n = 0..34);
  • Mathematica
    LinearRecurrence[{3, -2}, {1, 2, 4, 10}, 50] (* Paolo Xausa, Feb 27 2024 *)

Formula

a(n) = [x^n] ((x + 1)*(2*x^2 - 2*x + 1))/((2*x - 1)*(x - 1)).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n >= 4.

A090842 Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0

Views

Author

Paul Barry, Dec 09 2003

Keywords

Comments

Nodes on a tree with degree k interior nodes and degree 1 boundary nodes.

Examples

			Rows begin:
  1 4 10 22 ...
  1 5 17 53 ...
  1 6 26 106 ...
  1 7 37 187 ...
		

Crossrefs

Formula

The total number of nodes on a tree with degree k interior nodes and degree 1 boundary nodes is given by N(k, r) = (k*(k-1)^r-2)/(k-2).
G.f.: Sum_{k>=0} (1+x*y)/(1-x*y)/(1-(k+2)*x*y)*y^k. - Vladeta Jovovic, Dec 12 2003

A099942 Start with 1, then alternately double or add 2.

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 22, 44, 46, 92, 94, 188, 190, 380, 382, 764, 766, 1532, 1534, 3068, 3070, 6140, 6142, 12284, 12286, 24572, 24574, 49148, 49150, 98300, 98302, 196604, 196606, 393212, 393214, 786428, 786430, 1572860, 1572862, 3145724, 3145726
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Crossrefs

Programs

  • Magma
    [3*2^Ceiling(n/2) + (-1)^n - 3: n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
  • Mathematica
    LinearRecurrence[{0,3,0,-2},{1,2,4,8},50] (* Harvey P. Dale, May 03 2016 *)
  • PARI
    print1(a=1,",");for(n=1,20,print1(a=2*a,",",a=a+2,","))
    

Formula

a(0)=1; for n > 0, a(n) = a(n-1)*(1 + n mod 2) + 2*((n+1) mod 2).
G.f.: (2*x^3 + x^2 + 2*x + 1)/(2*x^4 - 3*x^2 + 1).
3*2^ceiling(n/2) + (-1)^n - 3. - Ralf Stephan, Dec 04 2004
a(2*n) = A033484(n).
a(n-1) + a(n) = A061776(n) for n > 0.
E.g.f.: -2*cosh(x) + 3*cosh(sqrt(2)*x) - 4*sinh(x) + 3*sqrt(2)*sinh(sqrt(2)*x). - Franck Maminirina Ramaharo, Nov 08 2018

Extensions

Edited and extended by Klaus Brockhaus, Nov 13 2004

A111526 Number triangle T(n,k)=C((n+k)/2,k)(n+1)(1+(-1)^(n-k))/(2(k+1)); T(n,k)=(-1)^((n-k)/2)*A053120(n+1,k+1)/2^k; Riordan array ((1+x^2)/(1-x^2)^2,x/(1-x^2)).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 5, 0, 5, 0, 1, 0, 9, 0, 6, 0, 1, 7, 0, 14, 0, 7, 0, 1, 0, 16, 0, 20, 0, 8, 0, 1, 9, 0, 30, 0, 27, 0, 9, 0, 1, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1, 13, 0, 91, 0, 182, 0, 156, 0, 65, 0, 13, 0, 1, 0
Offset: 0

Views

Author

Paul Barry, Aug 05 2005

Keywords

Comments

A scaled Chebyshev triangle.
Row sums are A001350(n+1). Diagonal sums are A033484, with interpolated zeros. Inverse is A111527.

Examples

			Triangle starts
1;
0,1;
3,0,1;
0,4,0,1;
5,0,5,0,1;
0,9,0,6,0,1;
7,0,14,0,7,0,1;
		

Crossrefs

Cf. A110813.

A126269 Numbers n such that hcl(n,n) < hcl(n,n-1) where hcl(n,i) is the Huffman code length; see comments.

Original entry on oeis.org

3, 4, 9, 10, 21, 22, 45, 46, 93, 94, 189, 190, 381, 382, 765, 766, 1533, 1534, 3069, 3070, 6141, 6142, 12285, 12286, 24573, 24574, 49149, 49150
Offset: 3

Views

Author

Serhat Sevki Dincer (mesti_mudam(AT)yahoo.com), Dec 22 2006

Keywords

Comments

Consider a string which consists of n distinct symbols such that symbol(i) has frequency i (i=1,2,...,n). Then hcl(n,i) is the Huffman code length of symbol(i).

Examples

			Possible Huffman codes for n = 3,4,5 are:
1 : 00
2 : 01
3 : 1
--------
1 : 100
2 : 101
3 : 11
4 : 0
--------
1 : 000
2 : 001
3 : 01
4 : 10
5 : 11
hcl(3,3)=1 < 2=hcl(3,2) and hcl(4,4)=1 < 2=hcl(4,3); so 3,4 are in the sequence.
hcl(5,5)=2=hcl(5,4) so 5 is not in the sequence.
		

Crossrefs

Formula

Conjecture: a(2k) = A033484(k-1) and a(2k-1) = A068156(k-1), k >= 2.
Conjectures from Colin Barker, Aug 06 2019: (Start)
G.f.: x^3*(3 + 4*x - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x^2)).
a(n) = 3*a(n-2) - 2*a(n-4) for n>6.
a(n) = -5/2 + (-1)^n/2 + 3*2^((1/2)*(n-5))*(2-2*(-1)^n + sqrt(2) + (-1)^n*sqrt(2)) for n>2.
(End)

Extensions

More terms from Sean A. Irvine, Aug 05 2019

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020
Previous Showing 51-60 of 72 results. Next