cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A064762 a(n) = 21*n^2.

Original entry on oeis.org

0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 7-partite graph of order 7n, K_n,n,n,n,n,n,n.

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 42*n + a(n-1) - 21 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = 21*A000290(n) = 7*A033428(n) = 3*A033582(n). - Omar E. Pol, Jul 03 2014
a(n) = t(7*n) - 7*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(7*n) - 7*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 21*x*(1 + x)/(1-x)^3.
E.g.f.: 21*x*(1 + x)*exp(x).
a(n) = n*A008603(n) = A195049(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A273367 Numbers k such that 10*k+6 is a perfect square.

Original entry on oeis.org

1, 3, 19, 25, 57, 67, 115, 129, 193, 211, 291, 313, 409, 435, 547, 577, 705, 739, 883, 921, 1081, 1123, 1299, 1345, 1537, 1587, 1795, 1849, 2073, 2131, 2371, 2433, 2689, 2755, 3027, 3097, 3385, 3459, 3763, 3841, 4161, 4243, 4579
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

Formula

a(2n) = 10*n^2 - 8*n + 1.
a(2n+1) = 10*n^2 + 8*n + 1.
G.f.: (x^4+2x^3+14x^2+2x+1)/((1-x)^3*(1+x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - G. C. Greubel, May 20 2016

A277715 Row 5 of A277710: Positions of 5's in A264977; positions of 10's in A277330.

Original entry on oeis.org

9, 21, 45, 93, 189, 381, 657, 765, 873, 1317, 1533, 1749, 2457, 2637, 3069, 3501, 4329, 4917, 5241, 5277, 5745, 6141, 6345, 7005, 8661, 9561, 9837, 10017, 10485, 10557, 11493, 12285, 12693, 14013, 15129, 17325, 17985, 19125, 19677, 20037, 20973, 21117, 21969, 22989, 24573, 25389, 26793, 28029, 30261, 31545, 34653, 35973
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2016

Keywords

Comments

Positions in A260443 of terms that are ten times a perfect square (terms in A033583, although not all of them are present in A260443).
It seems that A068156 from 9 onward is a subsequence, which (if true) would also be a sufficient condition for this sequence to be infinite.

Crossrefs

Formula

A277716(n) = a(n)/3.

A158447 a(n) = 10*n^2 - 1.

Original entry on oeis.org

9, 39, 89, 159, 249, 359, 489, 639, 809, 999, 1209, 1439, 1689, 1959, 2249, 2559, 2889, 3239, 3609, 3999, 4409, 4839, 5289, 5759, 6249, 6759, 7289, 7839, 8409, 8999, 9609, 10239, 10889, 11559, 12249, 12959, 13689, 14439, 15209, 15999, 16809, 17639
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

Sequence found by reading the line from 9, in the direction 9, 39, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

  • Magma
    I:=[9, 39, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Maple
    A158447:=n->10*n^2-1: seq(A158447(n), n=1..100); # Wesley Ivan Hurt, Apr 26 2017
  • Mathematica
    Table[10n^2-1,{n,50}]
    LinearRecurrence[{3,-3,1},{9,39,89},50] (* Harvey P. Dale, Dec 08 2017 *)
  • PARI
    a(n) = 10*n^2 - 1.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(9 + 12*x - x^2)/(1 - x)^3.
a(n) = A033583(n) - 1. - Omar E. Pol, Jul 18 2012
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(10))*cot(Pi/sqrt(10)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(10))*csc(Pi/sqrt(10)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(10))*csc(Pi/sqrt(10)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(10))*sin(Pi/sqrt(5))/sqrt(2). (End)
E.g.f.: exp(x)*(10*x^2 + 10*x - 1) + 1. - Stefano Spezia, Aug 25 2022

A249327 Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2014

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Northwest corner:
1   4    9    16   25    36    49
2   8    18   32   50    72    98
3   12   27   48   75    108   147
5   20   45   80   125   180   245
6   24   54   96   150   216   294
		

Crossrefs

Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).

Programs

  • Mathematica
    z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
    u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
    TableForm[t] (* A249327 array *)
    Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)

Formula

T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014

A273365 Numbers k such that 10*k+4 is a perfect square.

Original entry on oeis.org

0, 6, 14, 32, 48, 78, 102, 144, 176, 230, 270, 336, 384, 462, 518, 608, 672, 774, 846, 960, 1040, 1166, 1254, 1392, 1488, 1638, 1742, 1904, 2016, 2190, 2310, 2496, 2624, 2822, 2958, 3168, 3312, 3534, 3686, 3920, 4080, 4326, 4494
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 6, 14, 32, 48}, 50] (* G. C. Greubel, May 21 2016 *)
    Select[Range[0,5000],IntegerQ[Sqrt[10#+4]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=issquare(10*n+4) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 4*n, n>=0.
a(2n-1) = 10*n^2 - 4*n, n>=1.
G.f.: 2*x*(3*x^2+4x+3)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 11*x)*cosh(x) + (5*x^2 + 9*x + 1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)

A273368 Numbers k such that 10*k+9 is a perfect square.

Original entry on oeis.org

0, 4, 16, 28, 52, 72, 108, 136, 184, 220, 280, 324, 396, 448, 532, 592, 688, 756, 864, 940, 1060, 1144, 1276, 1368, 1512, 1612, 1768, 1876, 2044, 2160, 2340, 2464, 2656, 2788, 2992, 3132, 3348, 3496, 3724, 3880, 4120, 4284, 4536
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2), {x,0,50}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 4, 16, 28, 52}, 50] (* G. C. Greubel, May 20 2016 *)
  • PARI
    is(n)=issquare(10*n+9) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 6*n, n>=0.
a(2n-1) = 10*n^2 - 6*n, n>=1.
G.f.: 4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 9*x)*cosh(x) + (5*x^2 + 11*x -1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n) = 4*A085787(n). - R. J. Mathar, Jun 03 2016

A064763 a(n) = 28*n^2.

Original entry on oeis.org

0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 8-partite graph of order 8n, K_n,n,n,n,n,n,n,n.
Sequence found by reading the line from 0, in the direction 0, 28, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 56*n + a(n-1) - 28 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 28*A000290(n) = 14*A001105(n) = 7*A016742(n) = 4*A033582(n) = 2*A144555(n). - Omar E. Pol, Jul 03 2014
From Vincenzo Librandi, Mar 30 2015: (Start)
G.f.: 28*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = t(8*n) - 8*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(8*n) - 8*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 28*x*(1 + x)*exp(x).
a(n) = n*A135628(n). (End)

A326122 a(n) = 10 * sigma(n).

Original entry on oeis.org

10, 30, 40, 70, 60, 120, 80, 150, 130, 180, 120, 280, 140, 240, 240, 310, 180, 390, 200, 420, 320, 360, 240, 600, 310, 420, 400, 560, 300, 720, 320, 630, 480, 540, 480, 910, 380, 600, 560, 900, 420, 960, 440, 840, 780, 720, 480, 1240, 570, 930, 720, 980, 540, 1200, 720, 1200, 800, 900, 600, 1680, 620, 960
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2019

Keywords

Comments

10 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every 36-degree-three-dimensional sector arises after the 36-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a 10-pointed star formed by 10 rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->10*Sigma(n)); # After Muniru A Asiru
    
  • Magma
    [10*DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Jul 26 2019
  • Maple
    with(numtheory): seq(10*sigma(n), n=1..64);
  • Mathematica
    10*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
  • PARI
    a(n) = 10 * sigma(n);
    

Formula

a(n) = 10*A000203(n) = 5*A074400(n) = 2*A274535(n).
a(n) = A000203(n) + A325299(n) = A074400(n) + A319528(n).
Dirichlet g.f.: 10*zeta(s-1)*zeta(s). - (After Ilya Gutkovskiy)

A302576 Numbers k such that k/10 + 1 is a square.

Original entry on oeis.org

-10, 0, 30, 80, 150, 240, 350, 480, 630, 800, 990, 1200, 1430, 1680, 1950, 2240, 2550, 2880, 3230, 3600, 3990, 4400, 4830, 5280, 5750, 6240, 6750, 7280, 7830, 8400, 8990, 9600, 10230, 10880, 11550, 12240, 12950, 13680, 14430, 15200, 15990, 16800, 17630, 18480, 19350, 20240
Offset: 1

Views

Author

Bruno Berselli, Apr 10 2018

Keywords

Comments

Equivalently, numbers k such that (k + 10)*10 is a square.
The positive terms belong to the fourth column of the array in A185781.

Crossrefs

After -10, subsequence of A174133 because a(n) = ((n-1)^2-1)*(3^2+1).
Similar lists of k for which k/j + 1 is a square: A067998 (j=1), A054000 (j=2), A067725 (j=3), A134582 (j=4), A067724 (j=5), A067726 (j=6), A067727 (j=7), second bisection of A067728 (j=8), A147651 (j=9), this sequence (j=10), A067705 (j=11), second bisection of A067707 (j=12).

Programs

  • GAP
    List([1..50], n -> 10*n*(n-2));
    
  • Julia
    [10*n*(n-2) for n in 1:50] |> println
    
  • Magma
    [10*n*(n-2): n in [1..50]];
  • Mathematica
    Table[10 n (n - 2), {n, 1, 50}]
  • Maxima
    makelist(10*n*(n-2), n, 1, 50);
    
  • PARI
    vector(50, n, nn; 10*n*(n-2))
    
  • Python
    [10*n*(n-2) for n in range(1, 50)]
    
  • Sage
    [10*n*(n-2) for n in (1..50)]
    

Formula

O.g.f.: -10*x*(1 - 3*x)/(1 - x)^3.
E.g.f.: -10*x*(1 - x)*exp(x).
a(n) = a(2-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 10*n*(n - 2) = 10*A067998(n).
a(n) = A033583(n-1) - 10. - Altug Alkan, Apr 10 2018
Previous Showing 21-30 of 33 results. Next