cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 185 results. Next

A286385 a(n) = A003961(n) - A000203(n).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 3, 12, 12, 3, 1, 17, 3, 9, 11, 50, 1, 36, 3, 21, 23, 3, 5, 75, 18, 9, 85, 43, 1, 33, 5, 180, 17, 3, 29, 134, 3, 9, 29, 99, 1, 69, 3, 33, 97, 15, 5, 281, 64, 54, 23, 55, 5, 255, 19, 177, 35, 3, 1, 147, 5, 15, 171, 602, 35, 51, 3, 45, 49, 87, 1, 480, 5, 9, 121, 67, 47, 87, 3, 381, 504, 3, 5, 271, 25, 9, 35, 171, 7, 291, 75, 93, 57, 15, 41, 963
Offset: 1

Views

Author

Antti Karttunen, May 09 2017

Keywords

Comments

Are all terms nonnegative? This question is equivalent to the question posed in A285705.
From Antti Karttunen, Aug 05 2020: (Start)
The answer to the above question is yes. Because both A000203 and A003961 are multiplicative sequences, it suffices to prove that for any prime p, and e >= 1, q^e >= sigma(p^e) = ((p^(1+e))-1) / (p-1), where q = A151800(p), i.e., the next larger prime after p. If p is a lesser twin prime, then q = p+2 (and this difference can't be less than 2, apart from case p=2), and it is easy to see that (n+2)^e > ((n^(e+1)) - 1) / (n-1), for all n >= 2, e >= 1.
See comments in A326042.
(End)
This is the inverse Möbius transform of A337549, from which it is even easier to see that all terms are nonnegative. - Antti Karttunen, Sep 22 2020

Crossrefs

Cf. A326057 [= gcd(a(n), A252748(n))].

Programs

  • Mathematica
    Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] - DivisorSigma[1, #] &, 96] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A286385(n) = (A003961(n) - sigma(n));
    for(n=1, 16384, write("b286385.txt", n, " ", A286385(n)));
    
  • Python
    from sympy import factorint, nextprime, divisor_sigma as D
    from operator import mul
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2
    def a(n): return 2*a048673(n) - D(n) - 1 # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286385 n) (- (A003961 n) (A000203 n)))
    

Formula

a(n) = A285705(A048673(n)) - 1 = 2*A048673(n) - A000203(n) - 1.
a(n) = A336852(n) - A336851(n). - Antti Karttunen, Aug 05 2020
a(n) = Sum_{d|n} A337549(d). - Antti Karttunen, Sep 22 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) - Pi^2/12 = 1.24152934..., where q(p) = nextprime(p) (A151800). - Amiram Eldar, Dec 21 2023

A357976 Numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1

Views

Author

Gus Wiseman, Oct 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   1: {}
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A002219.
A subset of A300061.
The squarefree case is A357854, counted by A237258.
Positions of nonzero terms in A357879.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Maple
    filter:= proc(n) local F,s,t,i,R;
      F:= ifactors(n)[2];
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
      s:= add(t[1]*t[2],t=F)/2;
      if not s::integer then return false fi;
      try
      R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
      catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
      end try;
      true
    end proc:
    filter(1):= true:
    select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A153881 1 followed by -1, -1, -1, ... .

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 03 2009

Keywords

Comments

Dirichlet inverse of A074206.

Crossrefs

If prefixed by initial 0, we get A134824.
Cf. A074206 (Dirichlet inverse).

Programs

Formula

G.f: x*(1-2*x)/(1-x). - Mats Granvik, Mar 09 2009, rewritten R. J. Mathar, Mar 31 2010
a(n) = (-1)^A000040(n). - Juri-Stepan Gerasimov, Sep 10 2009
G.f.: x / (1 + x / (1 - 2*x)). - Michael Somos, Apr 02 2012
From Wesley Ivan Hurt, Jun 20 2014: (Start)
a(1) = 1; a(n) = -1, n > 1.
a(n) = 1 - 2*sign(n-1) = 1 - 2*A057427(n-1).
a(n) = (-1)^sign(1-n) = (-1)^A057427(1-n).
a(n) = 2*floor(1/n)-1 = 2*A063524(n)-1. (End)
Dirichlet g.f.: 2 - zeta(s). - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} A033879(d)*A055615(n/d) = Sum_{d|n} A344587(d)*A346234(n/d). - Antti Karttunen, Nov 22 2024

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
More terms from Antti Karttunen, Nov 22 2024

A111490 a(n) = n + Sum_{k=1..n} (n mod k). Row sums of A372727.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 9, 15, 16, 21, 23, 33, 29, 41, 45, 51, 52, 68, 65, 83, 81, 91, 99, 121, 109, 128, 138, 152, 152, 180, 168, 198, 199, 217, 231, 253, 234, 270, 286, 308, 298, 338, 326, 368, 372, 384, 404, 450, 422, 463, 470, 500, 506, 558, 546, 584, 576, 610, 636
Offset: 0

Views

Author

Keywords

Comments

If the binary operation mod is defined n mod k = n if k = 0 and otherwise n - k*floor(n/k), as recommended in 'Concrete Mathematics' by Graham et. al. (p. 82), then a(n) = Sum_{k=0..n} (n mod k), for n >= 0. This definition is for example implemented in Sage, but not in Python. - Peter Luschny, Jul 19 2024
Previous name was "Sum of the element of the antidiagonals of the numerical array M(m, n) defined as follows. First row (M11, M12, ..., M1n): 1, 1, 1, 1, 1, 1, ... (all 1's). Second row (M21, M22, ..., M2n): 1, 2, 1, 2, 1, 2, ... (sequence 1, 2 repeated). Third row (M31, M32, ..., M3n): 1, 2, 3, 1, 2, 3, 1, 2, 3, ... (sequence 1, 2, 3 repeated). Fourth row (M41, M42, ..., M4n): 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, ... (sequence 1, 2, 3, 4 repeated). And so on."
Then the sequence is M(1,1), M(1,2) + M(2,1), M(1,3) + M(2,2) + M(3,1), etc., a(n) = Sum_{i=1..n} M(i, n-i+1).
This means: a(n) are the antidiagonal sums of the numerical array defined by M(n, k) = 1 + (k-1) mod n. - Michel Marcus, Sep 23 2013
The successive determinants of the arrays are the factorial numbers (A000142). - Robert G. Wilson v

Examples

			If the mod operation is defined according CMath, and n = 11, then the list
[n mod k : k = 0..n] = [11, 0, 1, 2, 3, 1, 5, 4, 3, 2, 1, 0], and the total of this list is a(11) = 33.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994, 34th printing 2022.

Crossrefs

Partial sums of A033879. - Gionata Neri, Sep 10 2015
Cf. A000142, A004125, A372727 (triangle).

Programs

  • Maple
    A111490:=n->add(n mod i, i=1..n+1): seq(A111490(n), n=0..100); # Wesley Ivan Hurt, Dec 05 2014
    seq(n + add(irem(n, k), k = 2..n-1), n = 0..58); # Peter Luschny, Jul 19 2024
  • Mathematica
    t = Table[Flatten@Table[Range@n, {m, Ceiling[99/n]}], {n, 99}]; f[n_] := Sum[ t[[i, n - i + 1]], {i, n}]; Array[f, 58] (* Robert G. Wilson v, Nov 22 2005 *)
    (* to view table *) Table[Flatten@Table[Range@n, {m, Ceiling[40/n]}], {n, 10}] // TableForm
  • PARI
    vector(100, n, n + sum(k=2, n, n % k)) \\ Altug Alkan, Oct 12 2015
    
  • PARI
    a(n) = sum(k=1, n, 2*k-sigma(k)); \\ Michel Marcus, Oct 11 2015
    
  • Python
    from math import isqrt
    def A111490(n): return n*(n+1)+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Nov 01 2023
    
  • Python
    def a(n): return sum(n % k if k else n for k in range(n))
    print([a(n) for n in range(59)])  # Peter Luschny, Jul 19 2024
    
  • SageMath
    def a(n): return sum(n.mod(k) for k in range(n))
    print([a(n) for n in srange(59)])  # Peter Luschny, Jul 19 2024

Formula

a(n) = n + A004125(n). - Juri-Stepan Gerasimov, Aug 30 2009
a(n) = Sum_{i=1..n+1} (n mod i). - Wesley Ivan Hurt, Dec 05 2014
G.f.: 2*x/(1-x)^3 - (1-x)^(-1)*Sum_{k>=1} k*x^k/(1-x^k). - Robert Israel, Oct 11 2015
a(n) = (1 - Pi^2/12) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 04 2023

Extensions

Edited and extended by Robert G. Wilson v, Nov 22 2005
Prepending a(0) = 0 and new name using a formula of Juri-Stepan Gerasimov by Peter Luschny, Jul 19 2024

A357854 Squarefree numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 30, 70, 154, 165, 210, 273, 286, 390, 442, 462, 561, 595, 646, 714, 741, 858, 874, 910, 1045, 1155, 1173, 1254, 1326, 1330, 1334, 1495, 1653, 1771, 1794, 1798, 1870, 1938, 2139, 2145, 2294, 2415, 2465, 2470, 2530, 2622, 2639, 2730, 2926, 2945, 2958, 3034
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    30: {1,2,3}
    70: {1,3,4}
   154: {1,4,5}
   165: {2,3,5}
   210: {1,2,3,4}
   273: {2,4,6}
   286: {1,5,6}
   390: {1,2,3,6}
For example, 210 has factorization 14*15, and both factors have the same sum of prime indices 5, so 210 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A237258.
A subset of A319241, squarefree case of A300061.
Squarefree positions of nonzero terms in A357879.
This is the squarefree case of A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[1000],SquareFreeQ[#]&&MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A318458 a(n) = n AND A001065(n), where AND is bitwise-and (A004198) & A001065 = sum of proper divisors.

Original entry on oeis.org

0, 0, 1, 0, 1, 6, 1, 0, 0, 8, 1, 0, 1, 10, 9, 0, 1, 16, 1, 20, 1, 6, 1, 0, 0, 16, 9, 28, 1, 10, 1, 0, 1, 0, 1, 36, 1, 6, 1, 32, 1, 34, 1, 40, 33, 10, 1, 0, 0, 34, 17, 36, 1, 2, 17, 0, 17, 32, 1, 44, 1, 34, 41, 0, 1, 66, 1, 0, 1, 66, 1, 72, 1, 8, 1, 64, 1, 74, 1, 64, 0, 0, 1, 4, 21, 6, 1, 88, 1, 16, 17, 76, 1, 18, 25, 0, 1, 64, 33, 100, 1, 98, 1, 104, 65
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Comments

The peculiar look of the scatterplot is partly an artifact of the logarithmic scale. Compare also to the scatterplot of A318468.

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n)-BitwiseOr(n, SumOfDivisors(n)-n): n in [1..100]]; // Vincenzo Librandi, Aug 29 2018
  • Mathematica
    Table[BitAnd[n, DivisorSigma[1, n] - n], {n, 100}] (* Vincenzo Librandi, Aug 29 2018 *)
  • PARI
    A318458(n) = bitand(n,sigma(n)-n);
    

Formula

a(n) = A004198(n, A001065(n)).
a(n) = A000203(n) - A318456(n) = (A000203(n)-A318457(n))/2.

A077374 Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1

Views

Author

Jason Earls, Nov 30 2002

Keywords

Comments

Apart from {1, 3, 5, 7, 9, 11, 15, 21, 315}, subset of A088012. Probably finite. - Charles R Greathouse IV, Mar 28 2011
a(15) > 10^13. - Giovanni Resta, Mar 29 2013
The abundance of the given terms a(1..14) is: (-1, -2, -4, -6, -5, -10, -6, -10, -6, -6, 6, 6, 6, -6). See also A171929, A188263 and A188597 for numbers with abundancy sigma(n)/n close to 2. - M. F. Hasler, Feb 21 2017
a(15) > 10^22. - Wenjie Fang, Jul 13 2017

Examples

			sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))

Extensions

a(14) from Farideh Firoozbakht, Jan 12 2004

A103977 Zumkeller deficiency of n: Let d_1 ... d_k be the divisors of n. Then a(n) = min_{ e_1 = +-1, ... e_k = +-1 } | Sum_i e_i d_i |.

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, 0, 12, 4, 6, 1, 16, 1, 18, 0, 10, 8, 22, 0, 19, 10, 14, 0, 28, 0, 30, 1, 18, 14, 22, 1, 36, 16, 22, 0, 40, 0, 42, 4, 12, 20, 46, 0, 41, 7, 30, 6, 52, 0, 38, 0, 34, 26, 58, 0, 60, 28, 22, 1, 46, 0, 66, 10, 42, 0, 70, 1, 72, 34, 26, 12, 58, 0, 78, 0
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 01 2007

Keywords

Comments

Like the ordinary deficiency (A033879) obtains 0's only at perfect numbers (A000396), the Zumkeller deficiency obtains 0's only at integer-perfect numbers, A083207. See the formula section. Unlike the ordinary deficiency, this obtains only nonnegative values. See A378600 for another version. - Antti Karttunen, Dec 03 2024

Examples

			a(6) = 1 + 2 + 3 - 6 = 0.
		

Crossrefs

Cf. A125732, A125733, A005835, A023196, A033879, A083206, A083207 (positions of 0's), A263837, A378643 (Dirichlet inverse), A378644 (Möbius transform), A378645, A378646, A378647 (an analog of A000027), A378648 (an analog of sigma), A378649 (an analog of Euler phi), A379503 (positions of 1's), A379504, A379505.
Cf. A378600 (signed variant).
Cf. also A058377, A119347.

Programs

  • Maple
    A103977 := proc(n) local divs,a,acandid,filt,i,p,sigs ; divs := convert(numtheory[divisors](n),list) ; a := add(i,i=divs) ; for sigs from 0 to 2^nops(divs)-1 do filt := convert(sigs,base,2) ; while nops(filt) < nops(divs) do filt := [op(filt), 0] ; od ; acandid := 0 ; for p from 0 to nops(divs)-1 do if op(p+1,filt) = 0 then acandid := acandid-op(p+1,divs) ; else acandid := acandid+op(p+1,divs) ; fi ; od: acandid := abs(acandid) ; if acandid < a then a := acandid ; fi ; od: RETURN(a) ; end: seq(A103977(n),n=1..80) ; # R. J. Mathar, Nov 27 2007
    # second Maple program:
    a:= proc(n) option remember; local l, b; l, b:= [numtheory[divisors](n)[]],
          proc(s, i) option remember; `if`(i<1, s,
            min(b(s+l[i], i-1), b(abs(s-l[i]), i-1)))
          end: b(0, nops(l))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Dec 05 2024
  • Mathematica
    a[n_] := Module[{d = Divisors[n], c, p, m}, c = CoefficientList[Product[1 + x^i, {i, d}], x]; p = -1 + Position[c, ?(# > 0 &)] // Flatten; m = Length[p]; If[OddQ[m], If[(d = p[[(m + 1)/2]] - p[[(m - 1)/2]]) == 1, 0, d], p[[m/2 + 1]] - p[[m/2]]]]; Array[a, 100] (* _Amiram Eldar, Dec 11 2019 *)
  • PARI
    nonzerocoefpositions(p) = { my(v=Vec(p), lista=List([])); for(i=1,#v,if(v[i], listput(lista,i))); Vec(lista); }; \\ Doesn't need to be 0-based, as we use their differences only.
    A103977(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); my(plist=nonzerocoefpositions(p), m = #plist, d); if(!(m%2), plist[1+(m/2)]-plist[m/2], d = plist[(m+1)/2]-plist[(m-1)/2]; if(1==d,0,d)); }; \\ Antti Karttunen, Dec 03 2024, after Mathematica-program by Amiram Eldar

Formula

If n=p (prime), then a(n)=p-1. If n=2^m, then a(n)=1. [Corrected by R. J. Mathar, Nov 27 2007]
a(n) = 0 iff n is a Zumkeller number (A083207). - Amiram Eldar, Jan 05 2020
From Antti Karttunen, Dec 03 2024: (Start)
a(n) = A033879(n) iff n is a non-abundant number (A263837).
a(n) = abs(A378600(n)).
a(n) = 2*A378647(n) - A378648(n). [Analogously to A033879(n) = 2*n - sigma(n)]
a(n) = 0 <=> A083206(n) > 0.
(End)
a(p^e) = p^e - (1+p+...+p^(e-1)) = (p^e*(p-2) + 1)/(p-1) for prime p. - Jianing Song, Dec 05 2024
a(n) = 1 <=> A379504(n) > 0. - Antti Karttunen, Jan 07 2025

Extensions

More terms from R. J. Mathar, Nov 27 2007
Name "Zumkeller deficiency" coined by Antti Karttunen, Dec 03 2024

A326057 a(n) = gcd(A003961(n)-2n, A003961(n)-sigma(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 43, 1, 3, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 19, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Terms a(n) larger than 1 and equal to A252748(n) occur at n = 6, 28, 69, 91, 496, ..., see A326134. See also A349753.
Records 1, 3, 43, 45, 2005, 79243, ... occur at n = 1, 6, 28, 360, 496, 8128, ...

Crossrefs

Programs

  • Mathematica
    Array[GCD[#3 - #1, #3 - #2] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 78] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A252748(n) = (A003961(n) - (2*n));
    A286385(n) = (A003961(n) - sigma(n));
    A326057(n) = gcd(A252748(n), A286385(n));

Formula

a(n) = gcd(A252748(n), A286385(n)) = gcd(A003961(n) - 2n, A003961(n) - A000203(n)).
a(n) = gcd(A252748(n), A033879(n)) = gcd(A286385(n), A033879(n)). [Also A033880 can be used] - Antti Karttunen, May 06 2024

A325314 a(n) = n - A162296(n), where A162296(n) is the sum of divisors of n that have a square factor.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, -4, 0, 10, 11, -4, 13, 14, 15, -12, 17, -9, 19, -4, 21, 22, 23, -24, 0, 26, -9, -4, 29, 30, 31, -28, 33, 34, 35, -43, 37, 38, 39, -32, 41, 42, 43, -4, -9, 46, 47, -64, 0, -25, 51, -4, 53, -54, 55, -40, 57, 58, 59, -36, 61, 62, -9, -60, 65, 66, 67, -4, 69, 70, 71, -111, 73, 74, -25, -4, 77, 78, 79, -88, -36, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A162296(n).
a(n) = A033879(n) + A325313(n).
a(A228058(n)) = -A325320(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - zeta(2)/2 = 0.1775329665... . - Amiram Eldar, Feb 22 2024
Previous Showing 51-60 of 185 results. Next