cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A127051 Primes p such that denominator of Sum_{k=1..p-1} 1/k^7 is a seventh power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 83, 131, 251, 257, 263, 269, 271, 293, 419, 421, 479, 1163, 1171, 1181, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 3137, 3163, 3167, 3169, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^7; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/7)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127044 Squares of denominators of Sum_{k=1..p-1} 1/k^2 for p in A127042.

Original entry on oeis.org

1, 2, 12, 60, 720720, 12252240, 80313433200, 2329089562800, 144403552893600, 5342931457063200, 718766754945489455304472257065075294400, 52573842877942565273243107104095419458814459401768000
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], AppendTo[a, Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]]], {x, 1, 50}]; a

A267824 Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).

Original entry on oeis.org

283686649, 4514260853041
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2016

Keywords

Comments

Babbage proved the congruence holds if n > 2 is prime.
See A088164 and A263882 for references, links, and additional comments.
Conjecture: n is a term if and only if n = A088164(i)^2 for some i >= 1 (cf. McIntosh, 1995, p. 385). - Felix Fröhlich, Jan 27 2016
The "if" part of the conjecture is true: see the McIntosh reference. - Jonathan Sondow, Jan 28 2016
The above conjecture implies that this sequence and A228562 are disjoint. - Felix Fröhlich, Jan 27 2016
Composites c such that A281302(c) > 1. - Felix Fröhlich, Feb 21 2018

Examples

			a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
		

Crossrefs

A333592 a(n) = Sum_{k = 0..n} binomial(n+k-1, k)^2.

Original entry on oeis.org

1, 2, 14, 146, 1742, 22252, 296438, 4063866, 56884430, 808970960, 11649069764, 169444272692, 2485268015414, 36707034407396, 545386280953262, 8144809577111146, 122177689609022670, 1839933272106181720, 27804610617723365072, 421476329309967621504, 6406685024966332359492
Offset: 0

Views

Author

Peter Bala, Mar 27 2020

Keywords

Comments

Compare with the closed-form evaluation Sum_{k = 0..n} C(n+k-1,k) = C(2*n,n) = A000984(n) (see the first comment in A001700 for a proof).
It is well-known that Sum_{k = 0..n} C(n,k)^2 = C(2*n,n). Here, we consider by analogy Sum_{k = 0..n} C(-n,k)^2, where C(-n,k) = (-1)^k*C(n+k-1,k) for integer n and nonnegative integer k.
The sequence b(n) = C(2*n,n) of central binomial coefficients satisfies the supercongruences b(n*p^k) = b(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k - see Meštrović. We conjecture that the present sequence also satisfies these congruences. Some examples of the congruences are given below.
More generally, calculation suggests that for positive integer A and integer B, the sequence a(A,B;n) := Sum_{k = 0..A*n} C(B*n+k-1,k)^2 may satisfy the same congruences.
The sequence (a(p) - 2)/(2*p^3) for prime p >= 5 begins [89, 5924, 63652995, 8353899501, 187251503369243, 30724327840061789, 937835335872800013431, ...]. Cf. A034602.

Examples

			Examples of supercongruences:
a(11) - a(1) = 169444272692 - 2 = 2*(3^2)*5*7*(11^3)*397*509 == 0 ( mod 11^3 ).
a(2*7) - a(2) = 545386280953262 - 14 = (2^5)*(3^2)*(7^4)*788714021 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 5375188503768783714940459752 - 22252 = (2^2)*(5^6)*(31^2)* 89493252924350197127 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq( add( binomial(n+k-1,k)^2, k = 0..n ), n = 0..25);
  • Mathematica
    Table[Binomial[2*n-1, n]^2 * HypergeometricPFQ[{1, -n, -n}, {1 - 2*n, 1 - 2*n}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)^2); \\ Michel Marcus, Mar 29 2020.
    
  • Python
    from math import comb
    def A333592(n): return sum(comb(n+k-1,k)**2 for k in range(n+1)) if n else 1 # Chai Wah Wu, Oct 28 2022

Formula

a(n) ~ 2^(4*n) / (3*Pi*n). - Vaclav Kotesovec, Mar 28 2020
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n+k, k)*binomial(n+k-1, k) = 2 * Sum_{k = 0..n-1} (n + k)/n *binomial(n+k-1, k)^2. - Peter Bala, Nov 02 2024

A087754 a(n) = (C(2p,p)-2) / p^3, where p = prime(n).

Original entry on oeis.org

2, 10, 530, 4734, 474986, 5153122, 676701794, 1232820800342, 15623119507746, 34472401720246110, 6163354867874693078, 83483882991733501114, 15658391111267929558466, 42132263940113324754864134
Offset: 3

Views

Author

Henry Bottomley, Oct 02 2003

Keywords

Examples

			a(6)=4734 since 13 is the sixth prime and (C(26,13)-2)/13^3 = (10400600-2)/2197 = 4734.
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2p,p]-2)/p^3,{p,Prime[Range[3,20]]}] (* Harvey P. Dale, Oct 23 2017 *)

Formula

a(n) = A060842(n) / A000040(n).
a(n) = 2 * A034602(n).

A127049 Primes p such that denominator of Sum_{k=1..p-1} 1/k^6 is a sixth power.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 41, 43, 47, 97, 127, 191, 193, 197, 199, 211, 223, 227, 229, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 991, 997, 1009, 1013, 1187, 1193, 1201, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3613, 3617, 3623, 3631
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^6; If[PrimeQ[i + 1] && IntegerQ[(Denominator[su])^(1/6)], AppendTo[a, i + 1]]]; a]; d[2000]
    Select[Prime[Range[600]],IntegerQ[Surd[Denominator[Sum[1/k^6,{k,#-1}]], 6]]&] (* Harvey P. Dale, Aug 04 2019 *)

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A263882 Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n).

Original entry on oeis.org

1, 5, 35, 2915, 30771, 4037381, 48954659, 7782070631, 17875901604959, 242158352370063, 637739431824553035, 126348774791431208099, 1794903484322270273951, 367972191114796344623951, 1116504994413003106003899551, 3498520498083111051973370669639
Offset: 2

Views

Author

Jonathan Sondow, Nov 22 2015

Keywords

Comments

Charles Babbage proved in 1819 that b_p is an integer for prime p > 2. In 1862 Wolstenholme proved that the Wolstenholme quotient W_p = b_p / p is an integer for prime p > 3; see A034602.
The quotient b_n is an integer for composite n in A267824. No composite n is known for which W_n is an integer.

Examples

			a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Programs

  • Magma
    [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015
  • Maple
    map(p -> (binomial(2*p-1,p-1)-1)/p^2, select(isprime,[seq(i,i=3..100,2)])); # Robert Israel, Nov 24 2015
  • Mathematica
    Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]
    Table[(Binomial[2p-1,p-1]-1)/p^2,{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 20 2019 *)

Formula

a(n) = prime(n)*A034602(n) for n > 2.
a(PrimePi(A088164(n))) == 0 mod A088164(n)^2.

A382257 a(n) is the numerator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function.

Original entry on oeis.org

0, 1, 9, 17, 125, 461, 1715, 3217, 24309, 92377, 352715, 1352077, 5200299, 20058299, 77558759, 150270097, 1166803109, 4537567649, 17672631899, 68923264409, 269128937219, 1052049481859, 4116715363799, 16123801841549, 63205303218875, 247959266474051, 973469712824055, 3824345300380219, 15033633249770519
Offset: 1

Views

Author

M. F. Hasler, Apr 15 2025

Keywords

Comments

The value of tanh(...) is always a rational number thanks to the relation tanh(x+y) = (tanh x + tanh y)/(1 + (tanh x)*tanh y).
So actually the set of fractions {1/n, ..., (n-1)/n} is "summed up" using the operator x (+) y := (x + y)/(1 + x*y).
By Wolstenholme's theorem; if p > 3 is prime, then p^3 divides a(p). - Thomas Ordowski, Apr 27 2025

Examples

			For n=2, tanh(artanh(1/2)) = 1/2, so a(2) = numerator(1/2) = 1.
For n=3, tanh(artanh(1/3) + artanh(2/3)) = (1/3 + 2/3) / (1 + 1/3 * 2/3) = 9/11, so a(3) = 9.
Numerators of 0, 1/2, 9/11, 17/18, 125/127, 461/463, 1715/1717, 3217/3218, ...
		

Crossrefs

Cf. A001700, A010763, A034602, A383431 (denominators).

Programs

  • PARI
    apply( {A382257(n)=my(s=0); for(i=1, n-1, s=(s*n+i)/(n+s*i));numerator(s)}, [1..30])
  • Python
    from sympy import S,expand_trig as ET
    tanh,artanh = S("tanh, artanh")
    def A382257_test(n): # for illustration only -- slow for n >= 19
        n=S(n); return ET(tanh(sum(artanh(k/n) for k in range(1,n)))).numerator
    def A382257(n):
        s=0; i=S.One/n
        for k in range(1,n): s = (s + i*k)/(1 + s*k*i)
        return s.numerator
    
  • Python
    from functools import reduce
    from fractions import Fraction
    def A382257(n): return reduce(lambda x,y: Fraction(x+y,1+x*y),(Fraction(i,n) for i in range(1,n)),0).numerator # Chai Wah Wu, Apr 23 2025
    

Formula

a(n) = (binomial(2n-1, n-1) - 1)/2 if n = 2^m or a(n) = binomial(2n-1, n-1) - 1 = A010763(n-1) otherwise, since tanh(Sum_{k=1..n-1} artanh(k/n)) = (binomial(2n-1, n-1) - 1)/(binomial(2n-1, n-1) + 1) reduced. - Thomas Ordowski, Apr 27 2025

A127061 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 37, 41, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4283, 4289, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Crossrefs

Programs

Formula

Intersection of A127042 and A127046. - Michel Marcus, Nov 05 2013

Extensions

More terms from Max Alekseyev, Feb 08 2007
Missing terms in the [9461, 9587] range inserted by Michel Marcus, Nov 05 2013

A177783 Wolstenholme quotient of prime p=A000040(n), i.e., such integer m

Original entry on oeis.org

3, 6, 6, 7, 10, 14, 18, 20, 16, 24, 17, 38, 39, 19, 29, 28, 12, 53, 31, 19, 53, 58, 48, 42, 1, 33, 53, 37, 5, 81, 4, 17, 29, 13, 13, 72, 75, 70, 173, 159, 111, 150, 39, 178, 106, 163, 196, 163, 172, 30, 98, 24, 177, 261, 212, 223, 122, 147, 276, 17, 92, 111, 27, 209, 241
Offset: 3

Views

Author

Max Alekseyev, May 13 2010

Keywords

Comments

a(n) = 0 iff A000040(n) is a Wolstenholme prime (given by A088164).
For n>2 and p=A000040(n), H(p^2-p) == H(p^2-1) == a(n)*p (mod p^2).

Crossrefs

Programs

  • PARI
    { a(n) = my(p); p=prime(n); ((binomial(2*p-1,p)-1)/2/p^3)%p }

Formula

a(n) = H(p-1)/p^2 mod p = A001008(p-1)/A002805(p-1)/p^2 mod p = A034602(n)/2 mod p = (binomial(2*p-1,p)-1)/(2*p^3) mod p, where p = A000040(n).
a(n) = (-1/3)*B(p-3) mod p, with p=prime(n) and B(n) is the n-th Bernoulli number. - Michel Marcus, Feb 05 2016
a(n) = A087754(n)/4 mod A000040(n).

Extensions

Edited by Max Alekseyev, May 16 2010
Previous Showing 11-20 of 31 results. Next