cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A249620 Triangle read by rows: T(m,n) = number of partitions of the multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 3, 15, 11, 7, 9, 5, 52, 36, 21, 26, 12, 16, 7, 203, 135, 74, 92, 38, 52, 19, 66, 29, 31, 11, 877, 566, 296, 371, 141, 198, 64, 249, 98, 109, 30, 137, 47, 57, 15, 4140, 2610, 1315, 1663, 592, 850, 250, 1075, 392, 444, 105, 560
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A129306 and A096443, but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A035310
Columns: 0: A000110 (Bell), 1: A035098 (near-Bell), 2: A169587, 4: A169588
Last in row: end-1: A091437, end: A000041 (partition numbers)
The rightmost columns form a reflected version of the triangle A126442:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 2
3 5 4 3
4 15 11 7 5
5 52 36 21 12 7
6 203 135 74 38 19 11
7 877 566 296 141 64 30 15
8 4140 2610 1315 592 250 105 45 22
A249619 shows the number of permutations of the same multisets.

Examples

			See "The T(5,2)=21 partitions of {1,1,1,2,3}" link. Similar links for m=1..8 are in "Partitions of multisets" (Wikiversity).
Triangle begins:
  n     0    1   2   3   4   5   6   7   8   9  10
m
0       1
1       1
2       2    2
3       5    4   3
4      15   11   7   9   5
5      52   36  21  26  12  16   7
6     203  135  74  92  38  52  19  66  29  31  11
		

Crossrefs

A093802 Number of distinct factorizations of 105*2^n.

Original entry on oeis.org

5, 15, 36, 74, 141, 250, 426, 696, 1106, 1711, 2593, 3852, 5635, 8118, 11548, 16231, 22577, 31092, 42447, 57464, 77213, 103009, 136529, 179830, 235514, 306751, 397506, 512607, 658030, 841020, 1070490, 1357195, 1714274, 2157539, 2706174, 3383187, 4216358
Offset: 0

Views

Author

Alford Arnold, May 19 2004

Keywords

Examples

			105*A000079 is 105, 210, 420, 840, 1680, 3360, ... and there are 15 distinct factorizations of 210 so a(1) = 15.
a(0) = 5: 105*2^0 = 105 = 3*5*7 = 3*35 = 5*21 = 7*15. - _Alois P. Heinz_, May 26 2013
		

Crossrefs

Similar sequences: 45*A000079 => A002763, [1, 3, 9, 27, 81, 243...]*A000079 => A054225, 1*A002110 => A000110, 2*A002110 => A035098, A000142 => A076716.
Column k=3 of A346426.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b((105*2^n)$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0,
         Sum[If[d > k, 0, b[n/d, d]], {d, Divisors[n][[2;;-2]]}]];
    a[n_] := b[105*2^n, 105*2^n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)

Extensions

2 more terms from Alford Arnold, Aug 29 2007
Corrected offset and extended beyond a(7) by Alois P. Heinz, May 26 2013

A169587 The total number of ways of partitioning the multiset {1,1,1,2,3,...,n-2}.

Original entry on oeis.org

3, 7, 21, 74, 296, 1315, 6393, 33645, 190085, 1145246, 7318338, 49376293, 350384315, 2606467211, 20266981269, 164306340566, 1385709542808, 12133083103491, 110095025916745, 1033601910417425, 10024991744613469, 100316367530768074, 1034373400144455266
Offset: 3

Views

Author

Martin Griffiths, Dec 02 2009

Keywords

Examples

			The partitions of {1,1,1,2} are {{1},{1},{1},{2}}, {{1,1},{1},{2}}, {{1,2},{1},{1}}, {{1,1},{1,2}}, {{1,1,1},{2}}, {{1,1,2},{1}} and {{1,1,1,2}}, so a(4)=7.
		

Crossrefs

This is related to A000110, A035098 and A169588.
Row n=3 of A346426.
Cf. A346813.

Programs

  • Mathematica
    Table[(BellB[n] + 3 BellB[n - 1] + 5 BellB[n - 2] + 2 BellB[n - 3])/ 6, {n, 3, 23}]

Formula

For n>=3, a(n)=(Bell(n)+3Bell(n-1)+5Bell(n-2)+2Bell(n-3))/6, where Bell(n) is the n-th Bell number (the Bell numbers are given in A000110).
E.g.f.: (e^(3x)+6e^(2x)+9e^x+2)(e^(e^x-1))/6.

A169588 The total number of ways of partitioning the multiset {1,1,1,1,2,3,...,n-3}.

Original entry on oeis.org

5, 12, 38, 141, 592, 2752, 13960, 76464, 448603, 2801054, 18516832, 129034659, 944356507, 7235605732, 57879020756, 482189616711, 4174720731316, 37489711726834, 348592657600818, 3350919079643612, 33252861484374737, 340209759518479300, 3584240435109146792
Offset: 4

Views

Author

Martin Griffiths, Dec 02 2009

Keywords

Crossrefs

This is related to A000110, A035098 and A169587.
Row n=4 of A346426.
Cf. A346814.

Programs

  • Mathematica
    Table[(BellB[n] + 6 BellB[n - 1] + 17 BellB[n - 2] + 20 BellB[n - 3] + 21 BellB[n - 4])/24, {n, 4, 23}]

Formula

For n>=4, a(n)=(Bell(n)+6Bell(n-1)+17Bell(n-2)+20Bell(n-3)+21Bell(n-4))/24, where Bell(n) is the n-th Bell number (the Bell numbers are given in A000110). e.g.f. (e^(4x)+12e^(3x)+42e^(2x)+44e^x+21)(e^(e^x-1))/24.

A241500 Triangle T(n,k): number of ways of partitioning the n-element multiset {1,1,2,3,...,n-1} into exactly k nonempty parts, n>=1 and 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 11, 16, 7, 1, 1, 23, 58, 41, 11, 1, 1, 47, 196, 215, 90, 16, 1, 1, 95, 634, 1041, 640, 176, 22, 1, 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1, 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1, 1, 767, 18916, 90055, 146140, 105042, 38409, 7638, 831, 46, 1
Offset: 1

Views

Author

Andrew Woods, Apr 24 2014

Keywords

Examples

			There are 58 ways to partition {1,1,2,3,4,5} into three nonempty parts.
The first few rows are:
  1;
  1,   1;
  1,   2,    1;
  1,   5,    4,     1;
  1,  11,   16,     7,     1;
  1,  23,   58,    41,    11,     1;
  1,  47,  196,   215,    90,    16,    1;
  1,  95,  634,  1041,   640,   176,   22,   1;
  1, 191, 1996,  4767,  4151,  1631,  315,  29,  1;
  1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1;
  ...
		

Crossrefs

The first five columns appear as A000012, A083329, A168583, A168584, A168585.
Row sums give A035098.

Programs

  • PARI
    T(n,k) = stirling(n-1,k,2) + stirling(n-1,k-1,2) + binomial(k,2)*stirling(n-2,k,2); \\ Michel Marcus, Apr 24 2014

Formula

T(n,k) = S(n-1,k) + S(n-1,k-1) + C(k,2)*S(n-2,k), where S refers to Stirling numbers of the second kind (A008277), and C to binomial coefficients (A007318).

A093936 Table T(n,k) read by rows which contains in row n and column k the sum of A001055(A036035(n,j)) over all column indices j where A036035(n,j) has k distinct prime factors.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 16, 11, 15, 7, 28, 47, 36, 52, 11, 79, 156, 166, 135, 203, 15, 134, 408, 588, 667, 566, 877, 22, 328, 1057, 2358, 2517, 2978, 2610, 4140, 30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147, 42, 1197, 6826, 21336, 40130, 53690, 61421
Offset: 1

Views

Author

Alford Arnold, May 23 2004

Keywords

Comments

Sequence A050322 calculates factorizations indexed by prime signatures: A001055(A025487) For example, A050322(36) = A001055(A025487(36)) = 74 and A050322(43) = A001055(A024487(43)) = 92.
Note that A093936 can be readily extended by combining appropriate values from A096443. Row sums of A093936 yield A035310 and embedded sequences include A000041, A035098 and A000110. - Alford Arnold, Nov 19 2005

Examples

			a(19) = 166 because A001055(840) + A001055(1260) = 74 + 92.
Row n=4 of A036035 contains 16=2^4, 24=2^3*3, 36=2^2*3^2, 60=2^2*3*5 and 210=2*3*5*7. The 16 has k=1 distinct prime factor; 24 and 36 have k=2 distinct prime factors; 60 has k=3 distinct prime factors; 210 has k=4 distinct prime factors (see A001221).
T(4,1)=A001055(16)=5.
T(4,2)=A001055(24)+A001055(36)=7+9=16.
T(4,3)=A001055(60)=11.
T(4,4)=A001055(210)=15.
Table starts
1;
2, 2;
3, 4, 5;
5, 16, 11, 15;
7, 28, 47, 36, 52;
11, 79, 156, 166, 135, 203;
15, 134, 408, 588, 667, 566, 877;
22, 328, 1057, 2358, 2517, 2978, 2610, 4140;
30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147;
42, 1197, 6826, 21336, 40130, 53690, 61421, 76908, 70631, 115975;
...
		

Crossrefs

Programs

  • Maple
    A036035 := proc(n) local pr,L,a ; a := [] ; pr := combinat[partition](n) ; for L in pr do mul(ithprime(i)^op(-i,L),i=1..nops(L)) ; a := [op(a),%] ; od ; RETURN(a) ; end: A001221 := proc(n) local ifacts ; ifacts := ifactors(n)[2] ; nops(ifacts) ; end: listProdRep := proc(n,mincomp) local dvs,resul,f,i,rli ; resul := 0 ; if n = 1 then RETURN(1) elif n >= mincomp then dvs := numtheory[divisors](n) ; for i from 1 to nops(dvs) do f := op(i,dvs) ; if f =n and f >= mincomp then resul := resul+1 ; elif f >= mincomp then rli := listProdRep(n/f,f) ; resul := resul+rli ; fi ; od ; fi ; RETURN(resul) ; end: A001055 := proc(n) listProdRep(n,2) ; end: A093936 := proc(n,k) local a, a036035,j ; a := 0 ; a036035 := A036035(n) ; for j in a036035 do if A001221(j) = k then a := a+A001055(j) ; fi ; od ; RETURN(a) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d,",A093936(n,k)) ; od : od : # R. J. Mathar, Jul 27 2007

Extensions

More terms from Alford Arnold, Nov 19 2005
More terms from R. J. Mathar, Jul 27 2007

A087649 a(n) = (1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)).

Original entry on oeis.org

1, 2, 6, 21, 83, 363, 1733, 8942, 49484, 291871, 1825501, 12054705, 83734241, 609851830, 4644041462, 36883843101, 304846039251, 2616765134351, 23286746418237, 214489200063218, 2041785040262972, 20060079966396887, 203156789589084133, 2118391734395139205
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [(1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)): n in [0..30]]; // Vincenzo Librandi, Nov 13 2011

Formula

G.f.: (1-x+x^2)/(2*x*Q(0)) - 1/(2*x) + 1/2, where Q(k)= 1 - x - x/(1 - x*(2*k+1)/(1 - x - x/(1 - x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
E.g.f.: exp(exp(x) - 1) * (exp(2*x) + 1) / 2. - Ilya Gutkovskiy, Aug 09 2021

A131420 A tabular sequence of arrays counting ordered factorizations over least prime signatures. The unordered version is described by sequence A129306.

Original entry on oeis.org

1, 2, 3, 4, 8, 13, 8, 20, 44, 75, 26, 16, 48, 132, 308, 541, 76, 176, 32, 112, 368, 1076, 2612, 4683, 208, 604, 1460, 252, 818, 64, 256, 876, 3408, 10404, 25988, 47293, 544, 1888, 5740, 14300, 768, 2316, 3172, 7880, 128, 576, 2496, 10096, 36848, 116180
Offset: 1

Views

Author

Alford Arnold, Jul 10 2007

Keywords

Comments

The display has 1 2 3 5 7 11 15 ... terms per column. (cf. A000041)
The arrays begin
1.....2.....4......8......16.....32.....64......128
......3.....8.....20......48....112....256......576
...........13.....44.....132....368....976.....2496
..................75.....308...1076...3408....10096
.........................541...2612..10404....36848
...............................4683..25988...116180
.....................................47293...296564
.............................................545835
..................26......76....208....544
.........................176....604...1888
...............................1460...5740
.....................................14300
................................252....768
......................................2316
................................818...3172
......................................7880
with column sums
1....5....25....173....1297....12225....124997 => A035341
Column i corresponds to partitions of i. The rows correspond successively to the partitions {i}, {i-1,1},{i-2,1,1},{i-3,1,1,1}, ..., {i-7,1,1,1,1,1,1,1}, {i-2,2}, {i-3,2,1}, {i-4,2,1,1}, {i-5,2,1,1,1}, {i-3,3}, {i-3,3,1}, {i-4,2,2}, {i-5,2,2,1}. - Roger Lipsett, Feb 26 2016

Examples

			36 = 2*2*3*3 and is in A025487. There are 26 ways to factor 36 so a(11) = 26.
		

Crossrefs

Programs

  • Mathematica
    gozinta counts ordered factorizations of an integer, and if lst is a partition we have
    gozinta[1] = 1;
    gozinta[n_] := gozinta[n] = 1 + Sum[gozinta[n/i], {i, Rest@Most@Divisors@n}]
    a[lst_] := gozinta[Times @@ (Array[Prime, Length@lst]^lst)] (* Roger Lipsett, Feb 26 2016 *)

Extensions

Corrected entries in table in comments section - Roger Lipsett, Feb 26 2016
Previous Showing 11-18 of 18 results.