A249620
Triangle read by rows: T(m,n) = number of partitions of the multiset with m elements and signature corresponding to n-th integer partition (A194602).
Original entry on oeis.org
1, 1, 2, 2, 5, 4, 3, 15, 11, 7, 9, 5, 52, 36, 21, 26, 12, 16, 7, 203, 135, 74, 92, 38, 52, 19, 66, 29, 31, 11, 877, 566, 296, 371, 141, 198, 64, 249, 98, 109, 30, 137, 47, 57, 15, 4140, 2610, 1315, 1663, 592, 850, 250, 1075, 392, 444, 105, 560
Offset: 0
See "The T(5,2)=21 partitions of {1,1,1,2,3}" link. Similar links for m=1..8 are in "Partitions of multisets" (Wikiversity).
Triangle begins:
n 0 1 2 3 4 5 6 7 8 9 10
m
0 1
1 1
2 2 2
3 5 4 3
4 15 11 7 9 5
5 52 36 21 26 12 16 7
6 203 135 74 92 38 52 19 66 29 31 11
- Tilman Piesk, Triangle rows m=0..8, flattened.
- Tilman Piesk, Partitions of multisets (Wikiversity)
- Tilman Piesk, The T(5,2)=21 partitions of {1,1,1,2,3}
- Tilman Piesk, PHP code used to calculate the examples
A093802
Number of distinct factorizations of 105*2^n.
Original entry on oeis.org
5, 15, 36, 74, 141, 250, 426, 696, 1106, 1711, 2593, 3852, 5635, 8118, 11548, 16231, 22577, 31092, 42447, 57464, 77213, 103009, 136529, 179830, 235514, 306751, 397506, 512607, 658030, 841020, 1070490, 1357195, 1714274, 2157539, 2706174, 3383187, 4216358
Offset: 0
105*A000079 is 105, 210, 420, 840, 1680, 3360, ... and there are 15 distinct factorizations of 210 so a(1) = 15.
a(0) = 5: 105*2^0 = 105 = 3*5*7 = 3*35 = 5*21 = 7*15. - _Alois P. Heinz_, May 26 2013
-
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
end:
a:= n-> b((105*2^n)$2):
seq(a(n), n=0..50); # Alois P. Heinz, May 26 2013
-
b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0,
Sum[If[d > k, 0, b[n/d, d]], {d, Divisors[n][[2;;-2]]}]];
a[n_] := b[105*2^n, 105*2^n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)
Corrected offset and extended beyond a(7) by
Alois P. Heinz, May 26 2013
A169587
The total number of ways of partitioning the multiset {1,1,1,2,3,...,n-2}.
Original entry on oeis.org
3, 7, 21, 74, 296, 1315, 6393, 33645, 190085, 1145246, 7318338, 49376293, 350384315, 2606467211, 20266981269, 164306340566, 1385709542808, 12133083103491, 110095025916745, 1033601910417425, 10024991744613469, 100316367530768074, 1034373400144455266
Offset: 3
The partitions of {1,1,1,2} are {{1},{1},{1},{2}}, {{1,1},{1},{2}}, {{1,2},{1},{1}}, {{1,1},{1,2}}, {{1,1,1},{2}}, {{1,1,2},{1}} and {{1,1,1,2}}, so a(4)=7.
A169588
The total number of ways of partitioning the multiset {1,1,1,1,2,3,...,n-3}.
Original entry on oeis.org
5, 12, 38, 141, 592, 2752, 13960, 76464, 448603, 2801054, 18516832, 129034659, 944356507, 7235605732, 57879020756, 482189616711, 4174720731316, 37489711726834, 348592657600818, 3350919079643612, 33252861484374737, 340209759518479300, 3584240435109146792
Offset: 4
-
Table[(BellB[n] + 6 BellB[n - 1] + 17 BellB[n - 2] + 20 BellB[n - 3] + 21 BellB[n - 4])/24, {n, 4, 23}]
A241500
Triangle T(n,k): number of ways of partitioning the n-element multiset {1,1,2,3,...,n-1} into exactly k nonempty parts, n>=1 and 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 11, 16, 7, 1, 1, 23, 58, 41, 11, 1, 1, 47, 196, 215, 90, 16, 1, 1, 95, 634, 1041, 640, 176, 22, 1, 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1, 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1, 1, 767, 18916, 90055, 146140, 105042, 38409, 7638, 831, 46, 1
Offset: 1
There are 58 ways to partition {1,1,2,3,4,5} into three nonempty parts.
The first few rows are:
1;
1, 1;
1, 2, 1;
1, 5, 4, 1;
1, 11, 16, 7, 1;
1, 23, 58, 41, 11, 1;
1, 47, 196, 215, 90, 16, 1;
1, 95, 634, 1041, 640, 176, 22, 1;
1, 191, 1996, 4767, 4151, 1631, 315, 29, 1;
1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1;
...
-
T(n,k) = stirling(n-1,k,2) + stirling(n-1,k-1,2) + binomial(k,2)*stirling(n-2,k,2); \\ Michel Marcus, Apr 24 2014
A093936
Table T(n,k) read by rows which contains in row n and column k the sum of A001055(A036035(n,j)) over all column indices j where A036035(n,j) has k distinct prime factors.
Original entry on oeis.org
1, 2, 2, 3, 4, 5, 5, 16, 11, 15, 7, 28, 47, 36, 52, 11, 79, 156, 166, 135, 203, 15, 134, 408, 588, 667, 566, 877, 22, 328, 1057, 2358, 2517, 2978, 2610, 4140, 30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147, 42, 1197, 6826, 21336, 40130, 53690, 61421
Offset: 1
a(19) = 166 because A001055(840) + A001055(1260) = 74 + 92.
Row n=4 of A036035 contains 16=2^4, 24=2^3*3, 36=2^2*3^2, 60=2^2*3*5 and 210=2*3*5*7. The 16 has k=1 distinct prime factor; 24 and 36 have k=2 distinct prime factors; 60 has k=3 distinct prime factors; 210 has k=4 distinct prime factors (see A001221).
T(4,1)=A001055(16)=5.
T(4,2)=A001055(24)+A001055(36)=7+9=16.
T(4,3)=A001055(60)=11.
T(4,4)=A001055(210)=15.
Table starts
1;
2, 2;
3, 4, 5;
5, 16, 11, 15;
7, 28, 47, 36, 52;
11, 79, 156, 166, 135, 203;
15, 134, 408, 588, 667, 566, 877;
22, 328, 1057, 2358, 2517, 2978, 2610, 4140;
30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147;
42, 1197, 6826, 21336, 40130, 53690, 61421, 76908, 70631, 115975;
...
-
A036035 := proc(n) local pr,L,a ; a := [] ; pr := combinat[partition](n) ; for L in pr do mul(ithprime(i)^op(-i,L),i=1..nops(L)) ; a := [op(a),%] ; od ; RETURN(a) ; end: A001221 := proc(n) local ifacts ; ifacts := ifactors(n)[2] ; nops(ifacts) ; end: listProdRep := proc(n,mincomp) local dvs,resul,f,i,rli ; resul := 0 ; if n = 1 then RETURN(1) elif n >= mincomp then dvs := numtheory[divisors](n) ; for i from 1 to nops(dvs) do f := op(i,dvs) ; if f =n and f >= mincomp then resul := resul+1 ; elif f >= mincomp then rli := listProdRep(n/f,f) ; resul := resul+rli ; fi ; od ; fi ; RETURN(resul) ; end: A001055 := proc(n) listProdRep(n,2) ; end: A093936 := proc(n,k) local a, a036035,j ; a := 0 ; a036035 := A036035(n) ; for j in a036035 do if A001221(j) = k then a := a+A001055(j) ; fi ; od ; RETURN(a) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d,",A093936(n,k)) ; od : od : # R. J. Mathar, Jul 27 2007
A087649
a(n) = (1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)).
Original entry on oeis.org
1, 2, 6, 21, 83, 363, 1733, 8942, 49484, 291871, 1825501, 12054705, 83734241, 609851830, 4644041462, 36883843101, 304846039251, 2616765134351, 23286746418237, 214489200063218, 2041785040262972, 20060079966396887, 203156789589084133, 2118391734395139205
Offset: 0
A131420
A tabular sequence of arrays counting ordered factorizations over least prime signatures. The unordered version is described by sequence A129306.
Original entry on oeis.org
1, 2, 3, 4, 8, 13, 8, 20, 44, 75, 26, 16, 48, 132, 308, 541, 76, 176, 32, 112, 368, 1076, 2612, 4683, 208, 604, 1460, 252, 818, 64, 256, 876, 3408, 10404, 25988, 47293, 544, 1888, 5740, 14300, 768, 2316, 3172, 7880, 128, 576, 2496, 10096, 36848, 116180
Offset: 1
36 = 2*2*3*3 and is in A025487. There are 26 ways to factor 36 so a(11) = 26.
Cf.
A000041,
A000670,
A002033,
A025487,
A035098,
A035341,
A050324,
A074206,
A095705,
A098348,
A104725,
A108464,
A129306.
-
gozinta counts ordered factorizations of an integer, and if lst is a partition we have
gozinta[1] = 1;
gozinta[n_] := gozinta[n] = 1 + Sum[gozinta[n/i], {i, Rest@Most@Divisors@n}]
a[lst_] := gozinta[Times @@ (Array[Prime, Length@lst]^lst)] (* Roger Lipsett, Feb 26 2016 *)
Corrected entries in table in comments section -
Roger Lipsett, Feb 26 2016
Comments