cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 78 results. Next

A071139 Numbers k such that the sum of distinct primes dividing k is divisible by the largest prime dividing k.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 127, 128, 131, 137, 139, 140, 149, 150, 151, 157, 163, 167, 169, 173, 179, 180
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Comments

All primes and prime powers are terms, as are certain other composites (see Example section).
If k is a term then every multiple of k having no prime factors other than those of k are also terms. E.g., since 286 = 2*11*13 is a term, so are 572 = 286*2 and 3146 = 286*11.
If k = 2*p*q where p and q are twin primes, then sum = 2+p+q = 2q is divisible by q, the largest prime factor, so 2*A037074 is a subsequence.

Examples

			30 = 2*3*5; sum of distinct prime factors is 2+3+5 = 10, which is divisible by 5, so 30 is a term;
2181270 = 2*3*5*7*13*17*47; sum of distinct prime factors is 2+3+5+7+13+17+47 = 94, which is divisible by 47, so 2181270 is a term.
		

Crossrefs

Programs

  • Haskell
    a071139 n = a071139_list !! (n-1)
    a071139_list = filter (\x -> a008472 x `mod` a006530 x == 0) [2..]
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s], Print[{n, ba[n]}]], {n, 2, 1000000}]
  • PARI
    isok(n) = if (n != 1, my(f=factor(n)[,1]); (sum(k=1, #f~, f[k]) % vecmax(f)) == 0); \\ Michel Marcus, Jul 09 2018

Formula

A008472(k)/A006530(k) is an integer.

Extensions

Edited by Jon E. Schoenfield, Jul 08 2018

A138389 Binomial primes: positive integers n such that every i not coprime to n and not exceeding n/2 does not divide binomial(n-i-1,i-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 23, 24, 25, 29, 31, 33, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199
Offset: 1

Views

Author

Vladimir Shevelev, May 08 2008

Keywords

Comments

Note that every i not exceeding n/2 for which (n,i)=1 divides binomial(n-i-1,i-1). For n>33, a(n) is either prime or square of a prime or a product of twin primes. For a proof, see link of V. Shevelev.
Numbers n such that A178105(n) = 0. - Michel Marcus, Feb 07 2016

Crossrefs

Programs

  • Mathematica
    Select[Range@ 200, Function[n, NoneTrue[Select[Range@ Floor[n/2], ! CoprimeQ[#, n] &], Divisible[Binomial[n - # - 1, # - 1], #] &]]] (* Michael De Vlieger, Feb 07 2016, Version 10 *)
  • PARI
    isok(n) = {my(md = -1); for (d=2, n\2, if (((binomial(n-d-1,d-1) % d) == 0) && (gcd(n, d) > 1), if (md == -1, md = d, md = min(d, md)));); (md == -1);} \\ Michel Marcus, Feb 07 2016

A051779 Primes of form pq + 2 where p and q are twin primes.

Original entry on oeis.org

17, 37, 22501, 32401, 57601, 72901, 176401, 324901, 1664101, 1742401, 5336101, 6502501, 7452901, 11289601, 11492101, 18147601, 21622501, 34222501, 34574401, 40449601, 45968401, 81000001, 85377601, 92736901, 110880901, 118592101
Offset: 1

Views

Author

Joe DeMaio (jdemaio(AT)kennesaw.edu), Dec 09 1999

Keywords

Comments

Starting with 3rd term, 22501, all terms are of the form 900n^2+1 with n=5, 6, 8, 9, 14, 19, 43, 44, 77, 85 (A125251). - Zak Seidov, Dec 07 2008
Primes of the form (p^2 + q^2)/2, where p and q are twin primes. - Thomas Ordowski and Altug Alkan, Mar 19 2017

Examples

			The third term 22501 is a member of the sequence because 22501=149*151+2, 22501 is prime and {149,151} is a twin prime pair.
		

Crossrefs

Programs

  • Maple
    with (numtheory): for n from 1 to 2000 do if (ithprime(n+1)-ithprime(n)=2) then if (tau(ithprime(n)*ithprime(n+1)+2)=2) then print(ithprime(n),ithprime(n+1), ithprime(n)*ithprime(n+1)+2); fi; fi; od;
  • Mathematica
    lst={};Do[p=Prime[n];If[Length[Divisors[p-2]]==4&&(Divisors[p-2][[3]]-Divisors[p-2][[2]])==2, AppendTo[lst, p]], {n, 6*10^5}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 08 2008 *)
    Select[(First[#]Last[#]+2)&/@Select[Partition[Prime[Range[2700]], 2,1], Last[#]-First[#]==2&],PrimeQ]  (* Harvey P. Dale, Mar 11 2011 *)
    Select[2 + Times @@@ Select[ Partition[ Prime@ Range@ 1350, 2, 1], First[#] + 2 == Last[#] &], PrimeQ] (* Robert G. Wilson v, Mar 12 2001 *)

Formula

{A037074(k) + 2} INTERSECT {A000040}. {A001359(k) * A006512(k) + 2} INTERSECT {A000040}. {A054735(k)^2 + 2*A054735(k) + 2} INTERSECT {A000040}. - Jonathan Vos Post, May 11 2006

Extensions

Edited by R. J. Mathar, Aug 08 2008

A111192 Product of the n-th sexy prime pair.

Original entry on oeis.org

55, 91, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391, 96091, 98587, 111547, 122491, 126727, 136891
Offset: 1

Views

Author

Shawn M Moore (sartak(AT)gmail.com), Oct 23 2005

Keywords

Comments

Semiprime of the form 4*m^2-9 = (2*m-3)*(2*m+3). - Vincenzo Librandi, Jan 26 2016

Examples

			a(2)=91 because the second sexy prime pair is (7, 13) and 7*13=91.
		

Crossrefs

Cf. A037074, A143206, A195118; intersection of A143205 and A001358.

Programs

  • Haskell
    a111192 n = a111192_list !! (n-1)
    a111192_list = f a000040_list where
       f (p:ps@(q:r:_)) | q - p == 6 = (p*q) : f ps
                        | r - p == 6 = (p*r) : f ps
                        | otherwise  = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 4*n^2-9]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    #(#+6)&/@Select[Prime[Range[100]], PrimeQ[#+6]&] (* Harvey P. Dale, Dec 17 2010 *)
    (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is not in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {6}]; Select[ Range[125000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
    Select[Table[4 n^2 - 9, {n, 300}], PrimeOmega[#] == 2 &] (* Vincenzo Librandi, Jan 26 2016 *)

Formula

a(n) = A023201(n) * A046117(n). - Reinhard Zumkeller, Sep 13 2011

A143206 Product of the n-th cousin prime pair.

Original entry on oeis.org

21, 77, 221, 437, 1517, 2021, 4757, 6557, 9797, 11021, 12317, 16637, 27221, 38021, 50621, 53357, 77837, 95477, 99221, 123197, 145157, 159197, 194477, 210677, 216221, 239117, 250997, 378221, 416021, 455621, 549077, 576077, 594437, 680621
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Intersection of A143203 and A001358.
Sum_{n>=2} 1/a(n) > 0.02187310784. - R. J. Mathar, Jan 23 2013

Examples

			a(1) = 3*7 = 3*(3+4) = 21;
a(2) = 7*11 = 7*(7+4) = 77;
a(3) = 13*17 = 13*(13+4) = 221;
a(4) = 19*23 = 19*(19+4) = 437.
		

Crossrefs

Programs

  • Haskell
    a143206 n = a143206_list !! (n-1)
    a143206_list = (3*7) : f a000040_list where
       f (p:ps@(p':_)) | p'-p == 4 = (p*p') : f ps
                       | otherwise = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [(p*(p+4)): p in PrimesUpTo(1000)| IsPrime(p+4)]; // Vincenzo Librandi, Jan 04 2018
    
  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {4}]; Select[ Range@ 700000, fQ] (* Robert G. Wilson v, Feb 08 2012 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(q=p+4), print1(p*q, ", "))); \\ Michel Marcus, Jan 04 2018

Formula

a(n) = A023200(n)*A046132(n).

A167054 Values of A167053(k)-A167053(k-1)-1 not equal to 1.

Original entry on oeis.org

15, 19, 41, 83, 167, 337, 673, 1361, 2729, 5471, 10949, 21911, 43853, 87719, 175447, 350899, 701819, 1403641, 2807303, 5614657, 11229331, 22458671, 44917381, 89834777, 179669557, 359339171, 718678369
Offset: 1

Views

Author

Vladimir Shevelev, Oct 27 2009

Keywords

Comments

All terms of the sequence are primes or products of twin primes (A037074).

Crossrefs

Extensions

Values from a(3) on replaced by R. J. Mathar, Dec 17 2009
More terms from Amiram Eldar, Sep 13 2019

A071140 Numbers n such that sum of distinct primes dividing n is divisible by largest prime dividing n; n is neither a prime, nor a true power of prime.

Original entry on oeis.org

30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2160, 2240, 2250
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Comments

a(n) are the numbers such that the difference between the largest and the smallest prime divisor equals the sum of the other distinct prime divisors. - Michel Lagneau, Nov 13 2011
The statement above is only true for 966 of the first 1000 terms. The first counterexample is a(140) = 15015. - Donovan Johnson, Apr 10 2013
Lagneau's definition can be simplified to the largest prime divisor equals the sum of the other distinct prime divisors. - Christian N. K. Anderson, Apr 15 2013

Examples

			n = 70 = 2*5*7 has a form of 2pq, where p and q are twin primes; n = 3135 = 3*5*11*19, sum = 3+5+11+19 = 38 = 2*19, divisible by 19.
		

Crossrefs

Programs

  • Haskell
    a071140 n = a071140_list !! (n-1)
    a071140_list = filter (\x -> a008472 x `mod` a006530 x == 0) a024619_list
    -- Reinhard Zumkeller, Apr 18 2013
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Greater[s, 1], Print[{n, ba[n]}]], {n, 2, 1000000}]
    (* Second program: *)
    Select[Range@ 2250, And[Length@ # > 1, Divisible[Total@ #, Last@ #]] &[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)

Formula

A008472(n)/A006530(n) is an integer and n has at least 3 distinct prime factors.
A008472(a(n)) mod A006530(a(n)) = 0 and A010055(a(n)) = 0. - Reinhard Zumkeller, Apr 18 2013

A071147 Smallest squarefree number k with exactly n prime factors such that the sum of the prime factors is divisible by the largest prime dividing k, or 0 if no such k exists.

Original entry on oeis.org

1, 2, 0, 30, 3135, 3570, 72930, 1231230, 14804790, 497668710, 14908423530, 278196808890, 12192694624110, 550939666387110, 21275256232500270, 1458502323630662310, 87988283090327810190, 3254611619240885033130, 261462818462495728868790, 9965666894849284108299810, 557940830126698960967415390, 90544636506979071680577724410
Offset: 0

Views

Author

Labos Elemer, May 13 2002

Keywords

Comments

No solution exists for n=2, so a(2)=0.

Examples

			a(0) =       1 = 1;
a(1) =       2 = 2;
a(3) =      30 = 2 *  3 *  5;
a(4) =    3135 = 3 *  5 * 11 * 19;
a(5) =    3570 = 2 *  3 *  5 *  7 * 17;
a(6) =   72930 = 2 *  3 *  5 * 11 * 13 * 17;
a(7) = 1231230 = 2 *  3 *  5 *  7 * 11 * 13 * 41.
		

Crossrefs

Formula

A008472(k)/A006530(k) is an integer; k is squarefree and has exactly n prime factors.

Extensions

Corrected and extended by Donovan Johnson, Apr 22 2008
Name corrected by Jon E. Schoenfield, Jul 08 2018

A071700 Product of twin primes of form (4*k+3,4*(k+1)+1), k>=0.

Original entry on oeis.org

15, 143, 3599, 5183, 11663, 32399, 36863, 51983, 57599, 97343, 121103, 176399, 186623, 359999, 435599, 685583, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Crossrefs

Subsequence of A037074, A071700 and of A182140.
Cf. A071697, a(n) = A071698(n)*A071699(n).

Programs

  • Haskell
    a071700 n = a071700_list !! (n-1)
    a071700_list = [x * y | x <- [3, 7 ..], a010051' x == 1,
                            let y = x + 2, a010051' y == 1]
    -- Reinhard Zumkeller, Aug 05 2014
  • PARI
    for(k=0,1e3,if(isprime(4*k+3)&&isprime(4*k+5),print1(16*k^2+32*k +15", "))) \\ Charles R Greathouse IV, Jul 03 2013
    
  • PARI
    is(n)=my(k=sqrtint(n\16)); n==16*k^2+32*k+15 && isprime(4*k+3) && isprime(4*k+5) \\ Charles R Greathouse IV, Jul 03 2013
    
  • PARI
    is(n)=my(t); n%16==15 && issquare(n+1,&t) && isprime(t-1) && isprime(t+1) \\ Charles R Greathouse IV, Dec 12 2016
    
  • PARI
    list(lim)=my(v=List(),p=3); forprime(q=5,sqrtint(1+lim\1)+1, if(q-p==2 && p%4==3, listput(v,p*q)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 12 2016
    

Formula

a(n) >> n^2 log^4 n. - Charles R Greathouse IV, Jul 03 2013

A075369 Square associated with twin primes (p,p+2): p(p+2) + 1. Square of the average of twin primes.

Original entry on oeis.org

16, 36, 144, 324, 900, 1764, 3600, 5184, 10404, 11664, 19044, 22500, 32400, 36864, 39204, 51984, 57600, 72900, 79524, 97344, 121104, 176400, 186624, 213444, 272484, 324900, 360000, 381924, 412164, 435600, 656100, 675684, 685584, 736164
Offset: 1

Views

Author

Amarnath Murthy, Sep 20 2002

Keywords

Crossrefs

Programs

  • Haskell
    a075369 = (^ 2) . a014574  -- Reinhard Zumkeller, Feb 10 2015
    
  • Magma
    [a: n in [1..300] | IsSquare(a) where a is NthPrime(n)*NthPrime(n+1)+1]; // Vincenzo Librandi, Nov 19 2015
  • Maple
    P:= select(isprime,{seq(2*i+1,i=1..1000)}):
    T:= P intersect map(`+`,P,2):
    sort(convert(map(t -> (t-1)^2, T), list)); # Robert Israel, Nov 18 2015
  • Mathematica
    f[n_]:=Prime[n]*Prime[n+1]+1; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
  • PARI
    p=2; forprime(b=3, 1e3, if(b-p==2, print1(b*p+1", ")); p=b) \\ Altug Alkan, Nov 10 2015
    

Formula

a(n) = A037074(n) + 1. - Jon E. Schoenfield, Jan 13 2015
a(n) = A014574(n)^2. - Jon E. Schoenfield, Jan 14 2015
a(n) = A120875(n) + 2. - Jason Kimberley, Oct 22 2015
Previous Showing 11-20 of 78 results. Next