cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A243543 Smallest number whose list of divisors contains n distinct digits (in base 10).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 72, 54, 108
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Finite sequence with 10 terms.

Examples

			a(9) = 54 because 54 is the smallest number whose list of divisors contains 9 distinct digits; the list of divisors of 54: (1, 2, 3, 6, 9, 18, 27, 54) contains 9 distinct digits (1, 2, 3, 4, 5, 6, 7, 8, 9).
		

Crossrefs

Cf. Sequences of numbers n such that list of divisors of n contains k distinct digits: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.

A120712 Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.

Original entry on oeis.org

4, 6, 9, 21, 22, 25, 33, 39, 46, 49, 51, 54, 58, 78, 82, 93, 99, 111, 115, 121, 133, 141, 142, 147, 153, 154, 159, 162, 166, 169, 174, 177, 186, 187, 189, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 286, 289, 291, 294, 301, 318
Offset: 1

Views

Author

Eric Angelini, Jul 19 2007

Keywords

Examples

			   k |    divisors    | concatenation
  ---+----------------+--------------
   4 | (1) 2      (4) |        2
   6 | (1) 2, 3   (6) |       23
   9 | (1) 3      (9) |        3
  21 | (1) 3, 7  (21) |       37
  22 | (1) 2, 11 (22) |      211
  25 | (1) 5     (25) |        5
  33 | (1) 3, 11 (33) |      311
  39 | (1) 3, 13 (39) |      313
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for k from 2 to 1000 do:
    v0:=divisors(k):
    nn:=nops(v0):
    if nn > 2 then
    v1:=[seq(v0[j],j=2..nn-1)]:
    v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))):
    v3:=parse(v2):
    if isprime(v3) = true then lprint(k,v3) fi:
    fi:
    od: # Simon Plouffe
  • Mathematica
    fQ[n_] := PrimeQ@ FromDigits@ Most@ Rest@ Divisors@ n; Select[ Range[2, 320], fQ]
  • Python
    from sympy import divisors, isprime
    def ok(n):
        s = "".join(str(d) for d in divisors(n)[1:-1])
        return s != "" and isprime(int(s))
    print([k for k in range(319) if ok(k)]) # Michael S. Branicky, Oct 01 2024

Extensions

Name edited by Michel Marcus, Mar 09 2023

A209932 Numbers n such that smallest digit of all divisors of n is 0.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 214, 216, 218, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 315, 318, 320, 321, 324, 327, 330, 340, 350, 360, 370, 380, 390, 400
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2012

Keywords

Comments

Also numbers n such that smallest digit of concatenation of all divisors of n (A037278 or A176558) is 0.
Sequence is not the same as A011540, first deviation is at a(41): A011540(41) = 220, a(41) = 214.

Examples

			Number 214 is in sequence because smallest digit of all divisors of 214 (1, 2, 107, 214) is 0.
		

Crossrefs

Cf. A209929 (smallest digit of all divisors of n), complement of A209931.

Programs

  • Mathematica
    Select[Range[400],Min[Flatten[IntegerDigits/@Divisors[#]]]==0&] (* Harvey P. Dale, Dec 03 2021 *)

Extensions

Corrected and extended by Harvey P. Dale, Dec 03 2021

A257219 Numbers that have at least one divisor containing the digit 2 in base 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 2.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.
All even numbers and all numbers which have a digit "2" themselves are trivially in this sequence. The first terms not of this form are the odd multiples of odd numbers between 21 and 29: { 63 = 3*21, 69 = 3*23, 75 = 3*25, 81 = 3*27, 87 = 3*29, 105 = 5*21, 115 = 5*23, 135 = 5*27, 145 = 5*29, ...}. - M. F. Hasler, Apr 22 2015
A011532 (numbers that contain a 2) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 2.
In the same way all even numbers have the divisor 2 and thus are in this sequence; numbers N in { 20,...,29, 120,...,129, 200,...,299 } have the digit 2 in N which is divisor of itself. - _M. F. Hasler_, Apr 22 2015
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [2] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 2] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=!bittest(n,0)||setsearch(Set(digits(n)),2)||fordiv(n,d,setsearch(Set(digits(d)),2)&&return(1)) \\ M. F. Hasler, Apr 22 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 22 2015

A257220 Numbers that have at least one divisor containing the digit 3 in base 10.

Original entry on oeis.org

3, 6, 9, 12, 13, 15, 18, 21, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 52, 53, 54, 57, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 81, 83, 84, 86, 87, 90, 91, 92, 93, 96, 99, 102, 103, 104, 105, 106, 108
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 3.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [3] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 3] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=fordiv(n,d, if(setsearch(Set(digits(d)),3), return(1))); 0 \\ Charles R Greathouse IV, Apr 30 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 30 2015

A257221 Numbers that have at least one divisor containing the digit 4 in base 10.

Original entry on oeis.org

4, 8, 12, 14, 16, 20, 24, 28, 32, 34, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 56, 60, 64, 68, 70, 72, 74, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 108, 112, 114, 116, 120, 123, 124, 126, 128, 129, 132, 134, 135, 136, 138, 140, 141
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 4.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			16 is in sequence because the list of divisors of 16: (1, 2, 4, 8, 16) contains digit 4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [4] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
    
  • Mathematica
    Select[Range@ 141, Part[Plus @@ DigitCount@ Divisors@ #, 4] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
    Select[Range[200],Count[Flatten[IntegerDigits/@Divisors[#]],4]>0&] (* Harvey P. Dale, May 05 2022 *)
  • PARI
    is(n)=fordiv(n,d, if(setsearch(Set(digits(d)),4), return(1))); 0 \\ Charles R Greathouse IV, Apr 30 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 30 2015

A257222 Numbers that have at least one divisor containing the digit 5 in base 10.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 165
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 5.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			20 is in sequence because the list of divisors of 20: (1, 2, 4, 5, 10, 20) contains digit 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [5] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 5] > 0 &]
    Select[Range[200],Max[DigitCount[Divisors[#],10,5]]>0&] (* Harvey P. Dale, Sep 15 2018 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 5), return(1))); 0
    
  • Perl
    use ntheory ":all"; for my $n (1..1000) { say $n if scalar(grep {/5/} divisors($n)) } # Dana Jacobsen, May 07 2015
    
  • Perl
    use ntheory ":all"; my @a257222 = grep { scalar(grep {/5/} divisors($)) } 1..1000; # _Dana Jacobsen, May 07 2015
  • Python
    from sympy import divisors
    A257222_list = [n for n in range(1,10**3) if '5' in set().union(*(set(str(d)) for d in divisors(n,generator=True)))] # Chai Wah Wu, May 06 2015
    

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A175252 Numbers whose digit representation is equal to the digit representation of the initial terms of their sets of divisors in increasing order.

Original entry on oeis.org

1, 12, 124, 135, 1525, 13515, 124816, 12356910, 1243162124, 1525125625, 12478141928, 12510254150, 1234689111216, 1351553159265, 1597717414885, 12356910151830, 13791121336377, 123561015253050, 124510202550100, 135152575125375, 1236103206309618, 123456101215203060, 123569101518304590
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

From Michel Marcus, Sep 25 2022: (Start)
The term 124 (2^2*31) corresponds to the term of A077352 that is a prime.
The terms 135 (5*3^3), 1525 (5^2*61) and 1525125625 (5^4*2440201) correspond to the terms of A077353 that are powers of primes. (End)
The term 1597717414885 = 5 * 977 * 1741 * 187861, found by David A. Corneth, is especially remarkable for the magnitude of its 2nd smallest prime factor (counting repetitions). - Peter Munn, Oct 10 2022
Define g(n) to be the LCM of the divisors of a(n) that appear in the digit string of a(n) as specified in the definition, and let f(n) = log(g(n))/log(a(n)). Are there are only finitely many n for which f(n) >= f(4) = log(15)/log(135) = 0.55206901...? - Peter Munn, Oct 19 2022
a(26) > 10^23 (there are no terms with 23 digits). - Tim Peters, Dec 21 2022

Examples

			a(1) = 1: d(1) = {1}.
a(2) = 12: d(12) = {1, 2, 3, 4, 6, 12}.
a(3) = 124: d(124) = {1, 2, 4, 31, 62, 124}.
a(4) = 135: d(135) = {1, 3, 5, 9, 15, 27, 45, 135}.
		

Crossrefs

Cf. A037278, A357692. Subsequence of A131835.

Programs

  • PARI
    isok(k) = my(s=""); fordiv(k, d, s=concat(s, Str(d)); if (eval(s)==k, return(1)); if (eval(s)> k, return(0))); \\ Michel Marcus, Sep 22 2022
    
  • PARI
    is(n, {u = 10^5}) = { my(oldu = u, s, d, fe); s = ""; u = min(u, n); fe = factor(n, u); d = divisors(fe); if(#fe~ > 0 && fe[#fe~, 1] > u, d = select(x -> x < fe[#fe~, 1], d); ); for(i = 1, #d, if(d[i] > u, return(is(n, 10*oldu)); ); s=concat(s, Str(d[i])); if(eval(s) == n, return(1)); if(eval(s) > n, return(0)); ); is(n, 10*oldu); } \\ David A. Corneth, Oct 12 2022, Nov 07 2022
    
  • Python
    from sympy import divisors
    def ok(n):
        target, s = str(n), ""
        if target[0] != "1": return False
        for d in divisors(n):
            s += str(d)
            if len(s) >= len(target): return s == target
            elif not target.startswith(s): return False
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Sep 22 2022

Extensions

a(9)-a(10) from Michel Marcus, Sep 22 2022
a(11)-a(12) from Michel Marcus, Oct 02 2022
a(13)-a(15) from Tim Peters, Oct 17 2022
a(16)-a(17) from Giovanni Resta, Oct 20 2022
a(18)-a(20) from Tim Peters, Oct 27 2022
a(21) from Tim Peters, Oct 30 2022
a(22)-a(23) from Tim Peters, Nov 04 2022

A176553 Numbers m such that concatenations of divisors of m are noncomposites.

Original entry on oeis.org

1, 3, 7, 9, 13, 21, 31, 37, 67, 73, 79, 97, 103, 109, 121, 151, 163, 181, 183, 193, 219, 223, 229, 237, 277, 283, 307, 363, 367, 373, 381, 409, 433, 439, 471, 487, 489, 499, 511, 523, 571, 601, 603, 607, 613, 619, 657, 669, 709, 733, 787, 811, 817, 819, 823, 841, 867
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

Do all primes p > 5 have a multiple in this sequence? This holds at least for p < 10^4. - Charles R Greathouse IV, Sep 23 2016
Conjecture: this sequence is a subsequence of A003136 (Loeschian numbers). - Davide Rotondo, Jan 02 2022
If m is not in A003136, there is a prime p == 2 (mod 3) such that the exponent of p in the factorization of m is odd, then we have 3 | 1+p | 1+p+p^2+...+p^(2*r-1) | sigma(m), sigma = A000203 is the sum of divisors, so the concatenation of the divisors of m is also divisible by 3. - Jianing Song, Aug 22 2022

Examples

			a(6) = 21: the divisors of 21 are 1,3,7,21, and their concatenation 13721 is noncomposite.
		

Crossrefs

Subsequence of A045572.

Programs

  • Mathematica
    Select[Range[10^3], ! CompositeQ@ FromDigits@ Flatten@ IntegerDigits@ Divisors@ # &] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    is(n)=my(d=divisors(n)); d[1]="1"; isprime(eval(concat(d))) || n==1 \\ Charles R Greathouse IV, Sep 23 2016
    
  • Python
    from sympy import divisors, isprime
    def ok(m): return m==1 or isprime(int("".join(str(d) for d in divisors(m))))
    print([m for m in range(1, 900) if ok(m)]) # Michael S. Branicky, Feb 05 2022

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010
Data corrected by Bill McEachen, Nov 03 2021

A209928 Largest digit of all divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 6, 3, 7, 5, 8, 7, 9, 9, 5, 7, 2, 3, 8, 5, 6, 9, 8, 9, 6, 3, 8, 3, 7, 7, 9, 7, 9, 9, 8, 4, 7, 4, 4, 9, 6, 7, 8, 9, 5, 7, 6, 5, 9, 5, 8, 9, 9, 9, 6, 6, 6, 9, 8, 6, 6, 7, 8, 9, 7, 7, 9, 7, 7, 7, 9, 7, 9, 9, 8, 9, 8, 8, 8, 8, 8, 9
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2012

Keywords

Comments

Also largest digit of concatenation of all divisors of n (A037278, A176558).
a(n) = 9 for almost all n. - Charles R Greathouse IV, Mar 20 2012
With an offset of 1 rather than 0, A016186 tells us how many integers among the first 10^n have 9s among their digits, and those numbers are therefore guaranteed to index a 9 in this sequence. More interesting of course are those numbers that don't have a 9 in their own digits but do have a 9 among the digits of their nontrivial divisors. - Alonso del Arte, Mar 23 2012

Examples

			a(12) = 6 because digit 6 is largest digit of all divisors of 12: (1, 2, 3, 4, 6, 12).
		

Crossrefs

Cf. A054055 (largest digit of n).

Programs

  • Mathematica
    Flatten[Table[Take[Sort[Flatten[IntegerDigits[Divisors[n]]]], -1], {n, 100}]] (* Alonso del Arte, Mar 23 2012 *)
  • PARI
    a(n)=my(t);fordiv(n, d, t=max(t, vecmax(eval(Vec(Str(d))))); if(t>8, return(t)));t \\Charles R Greathouse IV, Mar 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return int(max("".join(map(str, divisors(n)))))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 22 2021
Previous Showing 21-30 of 57 results. Next