cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A266531 Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2016

Keywords

Comments

T(n,k) is the n-th positive integer with exactly k odd divisors.
This is a permutation of the natural numbers.
T(n,k) is also the n-th number j with the property that the symmetric representation of sigma(j) has k subparts (cf. A279387). - Omar E. Pol, Dec 27 2016
T(n,k) is also the n-th positive integer with exactly k partitions into consecutive parts. - Omar E. Pol, Aug 16 2018

Examples

			The corner of the square array begins:
    1,  3,  9, 15,   81,  45,   729, 105,  225,  405, ...
    2,  5, 18, 21,  162,  63,  1458, 135,  441,  567, ...
    4,  6, 25, 27,  324,  75,  2916, 165,  450,  810, ...
    8,  7, 36, 30,  625,  90,  5832, 189,  882,  891, ...
   16, 10, 49, 33,  648,  99, 11664, 195,  900, 1053, ...
   32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
   64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
  128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
  ...
		

Crossrefs

A285898 Triangle read by row: T(n,k) = number of partitions of n into exactly k consecutive parts (1 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol and N. J. A. Sloane, Apr 28 2017

Keywords

Comments

To partition n into k parts, we see if m exists such that m + (m + 1) + ... + (m + k - 1) = k*m + binomial(k, 2) = n exists. a(n) = 1 if and only if (n - binomial(k, 2)) / k is an integer and larger than 0. - David A. Corneth, Apr 28 2017
It appears that this a full version of the irregular triangle A237048. - Omar E. Pol, Apr 28 2017
The value of a(n) can never exceed 1, since that would imply the existence of distinct equal-length ranges of consecutive integers that add up to the same number, which is impossible. - Sidney Cadot, Jan 22 2023

Examples

			Triangle begins:
1;
1, 0;
1, 1, 0;
1, 0, 0, 0;
1, 1, 0, 0, 0;
1, 0, 1, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 1, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
For n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. These partitions are formed by 1, 2, 3 and 5 consecutive parts respectively, so the 15th row of the triangle is [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
		

Crossrefs

Programs

  • Maple
    A285898 := proc(n)
        corn := (n-binomial(k,2))/k ;
        if type(corn,'integer') then
            if corn > 0 then
                1 ;
            else
                0;
            end if;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    Table[Function[t, Function[s, ReplacePart[s, Map[# -> 1 &, t]]]@ ConstantArray[0, n]]@ Map[Length, Select[IntegerPartitions@ n, Length@ # == 1 || Union@ Differences@ # == {-1} &]], {n, 15}] // Flatten (* Michael De Vlieger, Apr 28 2017 *)
  • PARI
    T(n, k) = n-=binomial(k, 2); if(n>0,n%k==0) \\ David A. Corneth, Apr 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k):
        n=n - binomial(k, 2)
        if n>0:
            return 1 if n%k==0 else 0
        return 0
    for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 28 2017

Formula

A000203(n) = Sum_{k=1..n} (-1)^(k-1) * ((Sum_{j=k..n} T(j,k))^2 - (Sum_{j=k..n} T(j-1,k))^2), assuming that T(k-1,k) = 0. - Omar E. Pol, Oct 10 2018

A298467 Smallest positive integer that can be expressed as the sum of consecutive positive squares in exactly n ways.

Original entry on oeis.org

1, 25, 20449, 554503705
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2018

Keywords

Comments

a(5) > 10^9. - Rémy Sigrist, Jan 19 2018
a(5) > 10^15. - Michael S. Branicky, Feb 18 2023

Examples

			a(2) = 25 because 3^2 + 4^2 = 5^2 = 25,
a(3) = 20449 because 7^2 + 8^2 + ... + 39^2 = 38^2 + 39^2 + ... + 48^2 = 143^2 = 20449.
a(4) = 554503705 because 480^2 + 481^2 + ... + 1210^2 = 3570^2 + 3571^2 + ... + 3612^2 = 3613^2 + 3614^2 + ... + 3654^2 = 7442^2 + 7443^2 ... + 7451^2 = 554503705. - _Rémy Sigrist_, Jan 19 2018
		

Crossrefs

Formula

a(n) <= A234311(n).

Extensions

a(4) from Rémy Sigrist, Jan 19 2018

A318843 a(n) is the smallest number k such that the symmetric representation of sigma(k) consists of n parts of width 1.

Original entry on oeis.org

1, 3, 9, 21, 81, 147, 729, 903, 3025, 6875, 59049, 29095, 531441, 171875, 366025, 643885, 43046721, 3511475
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 04 2018

Keywords

Comments

The sequence is infinite since, for example, for any n >= 1 the symmetric representation of sigma(3^n) consists of n + 1 parts of width 1. However, it is not increasing since a(11) = 59049 = 3^10 and a(12) = 29095 = 5 * 11 * 23^2. Also a(13) <= 531441 = 3^12.
This sequence is a subsequence of A174905; its subsequences a(n) for odd/even n are subsequences of A241010/A241008, respectively. Some even-indexed elements of this sequence are members of A239663, e.g., a(2), a(4), a(6), a(8) and a(12), but not a(10) = 6875.
The central pair of parts in the symmetric representation of sigma(a(2)), sigma(a(4)) and sigma(a(8)) meets at the diagonal (see A298856).
From Hartmut F. W. Hoft, Oct 04 2021: (Start)
An upper bound to the sequence is a(n) <= 3^(n-1), n >= 1, (see A348171).
For p = 1,2,3,5,7,11,13,17, a(p) = 3^(p-1) and this equality possibly holds for all a(p) with p a prime.
Also, 75 * 10^6 < a(19) <= 3^18, a(20) = 15391255, a(21) = 44289025 and a(n) > 75 * 10^6 for n > 21.
a(13)-a(18) computations based on A348171 rather than A237270.
The symmetric representation of sigma(3^(p-1)), p prime, consists of p parts and its middle part has area 3^((p-1)/2). (End)
a(n) >= A038547(n) with equality for n=1 and primes n since the distinct prime divisors of n can be replaced by primes 3, 5, 7, 11, ... yielding a smaller number k with the same number of odd divisors. However, some parts in the symmetric representation of sigma(k) have width at least 2. - Hartmut F. W. Hoft, Dec 11 2023

Examples

			The smallest number k whose symmetric representation of sigma(k) consists of four parts of width one is a(4) = 21. The parts are 11, 5, 5, 11.
a(4) = 3*7 has width pattern, A341969, 1010101 while A038547(4) = 3*5 has width pattern 1012101. a(6) = 3 * 7^2 = 147 has width pattern 10101010101 while A038547(6) = 3^2 * 5 = 45 has width pattern 10121212101. - _Hartmut F. W. Hoft_, Dec 11 2023
		

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    segmentsSR[pathN0_, pathN1_] := SplitBy[Map[Min, Drop[Drop[pathN0, 1], -1] - pathN1], #==0&]
    regions[pathN0_ ,pathN1_] := Select[Map[Apply[Plus, #]&, segmentsSR[pathN0, pathN1]], #!=0&]
    width1Q[pathN0_, pathN1_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[pathN0, 1], -1] - pathN1, 1]]]
    (* parameter seq is the list of elements of the sequence in interval 1..m-1 already computed with an entry of 0 representing an element not yet found *)
    a318843[m_, n_, seq_] := Module[{list=Join[seq, Table[0, 10]], path1=path[m-1], path0, k, a, r, w}, For[k=m, k<=n, k++, path0=path[k]; a=regions[path0, path1]; r=Length[a]; w=width1Q[path0, path1]; If[w && list[[r]]==0, list[[r]]=k]; path1=path0]; list]
    a318843[2,60000,{1}] (* data - actually computed in steps *)

Extensions

a(13)-a(18) from Hartmut F. W. Hoft, Oct 04 2021

A267696 Numbers with 5 odd divisors.

Original entry on oeis.org

81, 162, 324, 625, 648, 1250, 1296, 2401, 2500, 2592, 4802, 5000, 5184, 9604, 10000, 10368, 14641, 19208, 20000, 20736, 28561, 29282, 38416, 40000, 41472, 57122, 58564, 76832, 80000, 82944, 83521, 114244, 117128, 130321, 153664, 160000, 165888, 167042, 228488, 234256, 260642, 279841
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly five odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 5 subparts. - Omar E. Pol, Dec 28 2016
Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 4 ways; e.g., 81 = 40+41 = 26+27+28 = 11+12+13+14+15+16 = 5+6+7+8+9+10+11+12+13. - Julie Jones, Aug 13 2018

Crossrefs

Column 5 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, this sequence, A230577, A267697, A267891, A267892, A267893.

Programs

  • GAP
    A:=List([1..700000],n->DivisorsInt(n));;
    B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=5); # Muniru A Asiru, Aug 14 2018
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 5; \\ Michel Marcus, Apr 03 2016
    

Formula

A001227(a(n)) = 5.
Sum_{n>=1} 1/a(n) = 2 * P(4) - 1/8 = 0.00289017370127..., where P(4) is the value of the prime zeta function at 4 (A085964). - Amiram Eldar, Sep 16 2024

Extensions

More terms from Michel Marcus, Apr 03 2016

A267697 Numbers with 7 odd divisors.

Original entry on oeis.org

729, 1458, 2916, 5832, 11664, 15625, 23328, 31250, 46656, 62500, 93312, 117649, 125000, 186624, 235298, 250000, 373248, 470596, 500000, 746496, 941192, 1000000, 1492992, 1771561, 1882384, 2000000, 2985984, 3543122, 3764768, 4000000, 4826809, 5971968, 7086244, 7529536, 8000000, 9653618
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly seven odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 7 subparts. - Omar E. Pol, Dec 28 2016
Numbers that can be formed in exactly 6 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
Numbers of the form p^6 * 2^k where p is an odd prime. - David A. Corneth, Aug 14 2018

Crossrefs

Column 7 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, this sequence, A267891, A267892, A267893.

Programs

  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 7; \\ Michel Marcus, Apr 03 2016
    
  • PARI
    upto(n) = {my(res = List()); forprime(p = 3, sqrtnint(n, 6), listput(res, p^6)); q = #res; for(i = 1, q, odd = res[i]; for(j = 1, logint(n \ odd, 2), listput(res, odd <<= 1))); listsort(res); res} \\ David A. Corneth, Aug 14 2018
    
  • Python
    from sympy import integer_log, primerange, integer_nthroot
    def A267697(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(integer_log(x//p**6,2)[0]+1 for p in primerange(3,integer_nthroot(x,6)[0]+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A001227(a(n)) = 7.
Sum_{n>=1} 1/a(n) = 2 * P(6) - 1/32 = 0.00289017370127..., where P(6) is the value of the prime zeta function at 6 (A085966). - Amiram Eldar, Sep 16 2024

Extensions

More terms from Michel Marcus, Apr 03 2016

A267891 Numbers with 8 odd divisors.

Original entry on oeis.org

105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly eight odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - Omar E. Pol, Dec 29 2016
Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - Robert Israel, Mar 15 2018
Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 8 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893.

Programs

  • Magma
    [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
  • Maple
    filter:= proc(n) local r;
      r:= n/2^padic:-ordp(n,2);
      numtheory:-tau(r)=8
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
  • Mathematica
    Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
    

Formula

A001227(a(n)) = 8.

A267892 Numbers with 9 odd divisors.

Original entry on oeis.org

225, 441, 450, 882, 900, 1089, 1225, 1521, 1764, 1800, 2178, 2450, 2601, 3025, 3042, 3249, 3528, 3600, 4225, 4356, 4761, 4900, 5202, 5929, 6050, 6084, 6498, 6561, 7056, 7200, 7225, 7569, 8281, 8450, 8649, 8712, 9025, 9522, 9800, 10404, 11858, 12100, 12168, 12321, 12996, 13122, 13225, 14112, 14161, 14400, 14450, 15129
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly nine odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 9 subparts. - Omar E. Pol, Dec 29 2016
From Robert Israel, Dec 29 2016: (Start)
Numbers k such that A000265(k) is in A030627.
Numbers of the form 2^j*p^8 or 2^j*p^2*q^2 where p and q are distinct odd primes. (End)
Numbers that can be formed in exactly 8 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 9 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, this sequence, A267893.

Programs

  • GAP
    A:=List([1..16000],n->DivisorsInt(n));; B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=9); # Muniru A Asiru, Aug 14 2018
  • Maple
    N:= 10^5: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N)/2),2)]);
    Aodd:= select(`<=`,map(t -> t^8, P) union {seq(seq(P[i]^2*P[j]^2,i=1..j-1),j=1..nops(P))}, N):
    A:= map(t -> seq(2^j*t,j=0..ilog2(N/t)), Aodd):
    sort(convert(A,list)); # Robert Israel, Dec 29 2016
  • Mathematica
    Select[Range[5^6], Length[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] == 9 &] (* Michael De Vlieger, Apr 04 2016 *)
    Select[Range[16000],Total[Boole[OddQ[Divisors[#]]]]==9&] (* Harvey P. Dale, May 12 2019 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 9; \\ after Michel Marcus.
    

Formula

A001227(a(n)) = 9.
Sum_{n>=1} 1/a(n) = (P(2)-1/4)^2 - P(4) + 2*P(8) + 7/128 = 0.026721189882055998428..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 16 2024

A267893 Numbers with 10 odd divisors.

Original entry on oeis.org

405, 567, 810, 891, 1053, 1134, 1377, 1539, 1620, 1782, 1863, 1875, 2106, 2268, 2349, 2511, 2754, 2997, 3078, 3240, 3321, 3483, 3564, 3726, 3750, 3807, 4212, 4293, 4375, 4536, 4698, 4779, 4941, 5022, 5427, 5508, 5751, 5913, 5994, 6156, 6399, 6480, 6642, 6723, 6875, 6966, 7128, 7203, 7209, 7452, 7500, 7614, 7857, 8125
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly 10 odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 10 subparts. - Omar E. Pol, Dec 29 2016
Numbers that can be formed in exactly 9 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 10 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, A267892, this sequence.

Programs

  • GAP
    A:=List([1..10000],n->DivisorsInt(n));; B:=List([1..Length(A)],i->Filtered(A[i],IsOddInt));;
    a:=Filtered([1..Length(B)],i->Length(B[i])=10); # Muniru A Asiru, Aug 14 2018
  • Mathematica
    Select[Range@ 8125, Length@ Select[Divisors@ #, OddQ] == 10 &] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 10; \\ after Michel Marcus
    

Formula

A001227(a(n)) = 10.

A122810 Number of distinct prime factors of the smallest odd number with exactly n divisors.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 4, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 5, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 5, 1, 3, 3, 4, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Ray Chandler, Sep 22 2006

Keywords

Comments

a(n) = 1 iff n is prime.

Crossrefs

Programs

  • Mathematica
    PrimeNu[Table[Select[Range[1, 532000, 2], DivisorSigma[0, #] == k + 1 &, 1], {k, 0, 15}] // Flatten] (* G. C. Greubel, May 07 2017 *)

Formula

a(n) = omega(A038547(n)), where omega(n) = A001221(n).

Extensions

Typo in A_number fixed by Matthew Vandermast, May 03 2014
Previous Showing 11-20 of 61 results. Next