cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A223138 Numbers n such that sigma(n+1) - sigma(n-1) = n / k for some integer, where sigma(n) = A000203 (sum of divisors of n).

Original entry on oeis.org

4, 5, 6, 9, 10, 12, 18, 30, 32, 42, 54, 56, 60, 72, 101, 102, 108, 129, 138, 144, 150, 172, 176, 180, 192, 198, 204, 216, 220, 228, 240, 252, 270, 282, 312, 348, 384, 420, 432, 462, 522, 544, 570, 600, 618, 642, 648, 660, 792, 810, 822, 828, 858, 882, 900, 1020
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2013

Keywords

Comments

Supersequence of A014574 for k = n/2 (average of twin prime pairs).
Corresponding values of integers k: 2, 1, 3, 3, -10, 6, 9, 15, 2, 21, 3, 7, 30, 36, -101, 51, 54, -43, 69, 12, 75, -2, -22, 90, 96, 99, 17, -27, -5, 114, 120, 7, 135, 141, 156, 174, 2, 210, 216, 231, 261, -8, 285, 300, 309, 321, 9, 330, -18, 405, 411, 414, 429, 441, 75, 510, ... (supersequence of A040040).

Examples

			Number 5 is in sequence because sigma(6) - sigma(4) = 12 - 7 = 5; k=1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[1, # + 1] - DivisorSigma[1, # - 1] != 0 && IntegerQ[#/(DivisorSigma[1, # + 1] - DivisorSigma[1, # - 1])] &] (* T. D. Noe, May 02 2013 *)

A243811 Numbers k such that 2*k+3 and 2*k+5 are both prime.

Original entry on oeis.org

0, 1, 4, 7, 13, 19, 28, 34, 49, 52, 67, 73, 88, 94, 97, 112, 118, 133, 139, 154, 172, 208, 214, 229, 259, 283, 298, 307, 319, 328, 403, 409, 412, 427, 439, 508, 514, 523, 529, 544, 574, 613, 637, 643, 649, 658, 712, 724, 739, 742, 802, 808, 832, 847, 859, 892, 934
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2014

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2*n+3) and IsPrime(2*n+5)];
  • Mathematica
    Select[Range[0, 1000], PrimeQ[2 # + 3] && PrimeQ[2 # + 5] &]

Formula

a(n) = A040040(n)-2.

A264263 The number of distinct nontrivial integral cevians of an isosceles triangle, with base of length 1 and legs of length n, that divide the base into two integral parts.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 3, 3, 1, 3, 3, 2, 5, 3, 1, 3, 7, 3, 3, 3, 1, 5, 5, 2, 5, 3, 3, 7, 3, 1, 5, 11, 3, 3, 3, 1, 5, 11, 3, 4, 4, 3, 7, 3, 3, 7, 7, 3, 5, 5, 1, 7, 7, 1, 3, 3, 3, 11, 11, 5, 5, 7, 3, 3, 3, 3, 15, 7, 1, 3, 7, 7, 11, 5, 1, 5, 11, 3, 3, 7, 3, 7, 7, 2
Offset: 1

Views

Author

Colin Barker, Nov 10 2015

Keywords

Comments

A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).
A nontrivial cevian is one that does not coincide with a side of the triangle.
If a(n) = 1 then the length of the unique cevian is n^2.
It seems that a(n) = 1 if and only if n is the average of twin prime pairs divided by 2 (A040040).

Examples

			a(4) = 2 because for legs of length 4 there are two cevians, of length 6 and 16, that divide the base into two integral parts.
		

Crossrefs

Programs

  • PARI
    ceviso(n) = {
      my(d, L=List());
      for(k=1, n^2,
        if(issquare(n^2+k^2-k, &d) && d!=n,
          listput(L, d)
        )
      );
      Vec(L)
    }
    vector(100, n, #ceviso(n))

A306247 Numbers k such that 2k - p is not a prime where p is any prime divisor of 4k^2 - 1.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 15, 19, 21, 26, 29, 30, 34, 36, 40, 48, 49, 51, 54, 61, 63, 64, 69, 74, 75, 79, 82, 84, 86, 89, 90, 95, 96, 99, 103, 106, 110, 111, 112, 114, 119, 120, 135, 139, 141, 146, 147, 149, 151, 152, 153, 154, 156, 161, 166, 169, 173, 174, 179, 180, 184, 186, 187, 190, 194
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 31 2019

Keywords

Comments

Primes in a(n): 2, 3, 19, 29, 61, 79, 89, 103, 139, 149, 151, 173, 179, ...

Examples

			1 is a term because 4*1^2 - 1 = 3 and 2*1 - 3 = -1 (nonprime);
2 is a term because 4*2^2 - 1 = 15 and 2*2 - 15 = -11 (nonprime);
3 is a term because 4*3^2 - 1 = 35 and 2*3 - 35 = -29 (nonprime);
6 is a term because 4*6^2 - 1 = 143 = 11*13 and 2*6 - 11 = 1 (nonprime), 2*6 - 13 = -1 (nonprime);
9 is a term because 4*9^2 - 1 = 323 = 17*19 and 2*9 - 17 = 1 (nonprime), 2*9 - 19 = -1 (nonprime).
		

Crossrefs

Includes A040040.
Cf. A306261.

Programs

  • Maple
    filter:= proc(n) andmap(`not` @ isprime, map(p -> 2*n-p, numtheory:-factorset(4*n^2-1))) end proc:
    select(filter, [$1..300]); # Robert Israel, Jan 31 2019
  • Mathematica
    Select[Range@ 200, AllTrue[2 # - FactorInteger[4 #^2 - 1][[All, 1]], ! PrimeQ@ # &] &] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    isok(k) = {my(pf = factor(4*k^2-1)[,1]); #select(x->isprime(2*k-x), pf) == 0;} \\ Michel Marcus, Mar 02 2019

Formula

A306261(a(n)) > 1 for n >= 4.

A365416 Numbers k such that 2*k-1 and 2*k+1 are both prime powers (A246655).

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 21, 24, 30, 36, 40, 41, 51, 54, 63, 69, 75, 84, 90, 96, 99, 114, 120, 121, 135, 141, 156, 174, 180, 210, 216, 231, 261, 285, 300, 309, 321, 330, 364, 405, 411, 414, 420, 429, 441, 510, 516, 525, 531, 546, 576, 615, 639, 645, 651, 660, 684
Offset: 1

Views

Author

Jianing Song, Oct 22 2023

Keywords

Comments

According to Pillai's conjecture, k = 13 is the only term such that 2*k-1 and 2*k+1 both have exponent greater than 1.

Examples

			41 is a term since 2*41-1 = 81 is a prime power, and 2*41+1 = 83 is a prime.
		

Crossrefs

Cf. A246655. Supersequence of A040040 and 2*A365411.

Programs

  • PARI
    isA365416(n) = isprimepower(2*n-1) && isprimepower(2*n+1)

A094949 Phi(m)*sigma(m), where m is the product of exactly two primes that differ by 2, where phi=A000010, sigma=A000203.

Original entry on oeis.org

192, 1152, 20160, 103680, 806400, 3104640, 12945600, 26853120, 108201600, 136002240, 362597760, 506160000, 1049630400, 1358807040, 1536796800, 2702128320, 3317529600, 5314118400, 6323748480, 9475464960, 14665694400
Offset: 1

Views

Author

Lekraj Beedassy, Jun 19 2004

Keywords

Comments

If m=p*q for the twin prime pair (p, q), then the relation p^2 + q^2 = 2*(m+2) is evident from equations p*(p+2)=m=q*(q-2). Now phi(m)=(p-1)*(q-1)=p^2 - 1 and sigma(m)=(p+1)*(q+1)=q^2 - 1, so that phi(m)*sigma(m)=(p*q)^2 -(p^2 + q^2)+1=m^2-2*(m+2)+1=(m-3)*(m+1).

Crossrefs

Programs

  • Mathematica
    EulerPhi[#]DivisorSigma[1,#]&/@Times@@@Select[Partition[Prime[ Range[ 200]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 13 2017 *)
  • PARI
    {m=400;p=1;while(p
    				

Formula

a(n)=(m-3)*(m+1), where m=A037074(n).
a(n)=192*A002415(k), where k=A040040(n-1).
a(n) = (A120875(n))^2 - 4 = 4*((A120876(n))^2 - 1). - Lekraj Beedassy, Jul 09 2006

Extensions

Corrected and extended by Jason Earls, Rick L. Shepherd, Vladeta Jovovic and Klaus Brockhaus, Jun 20 2004

A113710 a(n) = A113709(n)/(prime(n+1) - prime(n)).

Original entry on oeis.org

2, 3, 2, 6, 4, 9, 5, 4, 15, 6, 10, 21, 11, 8, 9, 30, 11, 17, 36, 13, 20, 14, 12, 25, 51, 26, 54, 28, 9, 32, 22, 69, 14, 75, 26, 27, 41, 28, 29, 90, 19, 96, 49, 99, 17, 18, 56, 114, 58, 39, 120, 25, 42, 43, 44, 135, 46, 70, 141, 29, 21, 77, 156, 79, 23, 56, 34, 174, 88, 59, 45, 62
Offset: 2

Views

Author

Leroy Quet, Nov 06 2005

Keywords

Comments

Records are in A040040. - Andres Cicuttin, Nov 26 2016

Examples

			Between the primes 67 and 71 is the composite 68 and 68 is divisible by (71-67)=4. So 68/(71-67)= 17 is in the sequence.
		

Crossrefs

Cf. A113709.

Formula

a(n) = floor(p(n+1)/(p(n+1)-p(n))) = ceiling(p(n)/(p(n+1)-p(n))), where p(n) is the n-th prime. - Leroy Quet, Feb 03 2007
a(n) = A113709(n)/A001223(n). - Omar E. Pol, Nov 26 2016

Extensions

More terms from R. J. Mathar, Aug 31 2007

A123200 Numbers k such that 1000000*k-1 and 1000000*k+1 are twin primes.

Original entry on oeis.org

24, 30, 198, 345, 348, 432, 438, 471, 492, 609, 669, 774, 777, 858, 864, 1032, 1083, 1125, 1218, 1395, 1536, 1824, 1914, 1929, 2088, 2139, 2301, 2334, 2376, 2418, 2448, 2460, 2544, 2763, 2832, 2970, 3021, 3297, 3369, 3384, 3495, 3528, 3540, 3633, 3777
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2006

Keywords

Examples

			a(6) = 432 because 431999999 and 432000001 are primes.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(10^6*n-1)=true and isprime(10^6*n+1)=true then n else fi end: seq(a(n),n=1..4500); # Emeric Deutsch, Nov 16 2006
  • Mathematica
    Select[Range[3800],AllTrue[#*10^6+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 13 2017 *)

Extensions

More terms from Emeric Deutsch, Nov 16 2006

A160919 Averages of twin prime pairs that are sums of 5 consecutive averages of twin prime pairs.

Original entry on oeis.org

108, 570, 858, 1452, 3330, 6792, 7458, 9420, 9630, 10710, 10890, 13722, 17388, 18120, 25032, 27582, 27792, 34032, 68712, 68898, 72270, 76830, 78978, 81372, 89820, 90402, 95232, 99708, 104472, 119772, 122868, 125790, 138078, 165312
Offset: 1

Views

Author

Keywords

Examples

			Averages of twin prime pairs: 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, ...
108 = 6 + 12 + 18 + 30 + 42, 570 = 72 + 102 + 108 + 138 + 150, ...
		

Crossrefs

Programs

  • Mathematica
    PrimeNextTwinAverage[n_]:=Module[{k},k=n+1; While[ !PrimeQ[k-1]||!PrimeQ[k+1],k++ ];k];lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],a=n;b=PrimeNextTwinAverage[a]; c=PrimeNextTwinAverage[b]; d=PrimeNextTwinAverage[c];e=PrimeNextTwinAverage[d]; a=a+b+c+d+e; If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,a]]],{n,3*8!}];lst
    Select[Total/@(Partition[Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]-#[[1]]==2&],5,1]),AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Sep 26 2024 *)

A160920 Primes which are at the same time balanced primes of order 2, 3 and 4.

Original entry on oeis.org

236429, 1108477, 1829801, 2073263, 2191513, 2192789, 3236267, 3990031, 4248947, 4485683, 4986061, 6869969, 7711079, 8473811, 8480911, 9282173, 9327277, 9350123, 9547303, 9730649, 12077909, 12993917, 13165441, 13398611, 14129761, 14785907
Offset: 1

Views

Author

Keywords

Comments

The intersection of A082077, A082078 and A082079.

Crossrefs

Programs

  • GAP
    P:=Filtered([1,3..2*10^7+1],IsPrime);;
    a:=Intersection(List([2,3,4],b->List(Filtered(List([0..Length(P)-(2*b+1)],k->List([1..2*b+1],j->P[j+k])),i->Sum(i)/(2*b+1)=i[b+1]),m->m[b+1]))); # Muniru A Asiru, Apr 08 2018
  • Maple
    isBalPr := proc(p,o) local r,s,i ; r := p ; if isprime(p) then s := p ; for i from 1 to o do r := nextprime(r) ; s := s+r ; end do: r := p ; for i from 1 to o do r := prevprime(r) ; s := s+r ; end do: s := s/(2*o+1) ; if s = p then true; else false; end if; else false; end if; end proc:
    isA160920 := proc(p) isBalPr(p,2) and isBalPr(p,3) and isBalPr(p,4) ; end proc:
    for i from 10 do p := ithprime(i) ; if isA160920(p) then printf("%d,\n",p); end if; end do: # R. J. Mathar, Dec 15 2010
  • Mathematica
    PrimeNext[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k],k++ ];k];PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k];lst={};Do[p=Prime[n];a1=PrimePrev[p];a2=PrimePrev[a1];a3=PrimePrev[a2];a4=PrimePrev[a3];a5=PrimePrev[a4];b1=PrimeNext[p];b2=PrimeNext[b1];b3=PrimeNext[b2];b4=PrimeNext[b3];b5=PrimeNext[b4];If[(a1+a2+a3+a4+b1+b2+b3+b4)/8==p&&(a1+a2+a3+b1+b2+b3)/6==p&&(a1+a2+b1+b2)/4==p,AppendTo[lst,p]],{n,2*9!}];lst
Previous Showing 31-40 of 43 results. Next