cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A367299 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 5*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 2, 5, 5, 18, 24, 12, 62, 126, 115, 29, 192, 545, 794, 551, 70, 567, 2040, 4114, 4716, 2640, 169, 1618, 7047, 17940, 28420, 26964, 12649, 408, 4508, 23020, 70582, 140988, 185122, 150122, 60605, 985, 12336, 72222, 258492, 620379, 1027368, 1156155, 819558, 290376
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    2    5
    5   18    24
   12   62   126   115
   29  192   545   794    551
   70  567  2040  4114   4716   2640
  169 1618  7047 17940  28420  26964  12649
  408 4508 23020 70582 140988 185122 150122 60605
Row 4 represents the polynomial p(4,x) = 12 + 62*x + 126*x^2 + 115*x^3, so (T(4,k)) = (12,62,126,115), k=0..3.
		

Crossrefs

Cf. A000129 (column 1); A004254 (p(n,n-1)); A186446 (row sums, p(n,1)); A007482 (alternating row sums, p(n,-1)); A041025 (p(n,-2)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 2 + 5*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(8 + 12*x + 21*x^2)), b = (1/2) (5*x + 2 + 1/k), c = (1/2) (5*x + 2 - 1/k).

A243399 a(0) = 1, a(1) = 19; for n > 1, a(n) = 19*a(n-1) + a(n-2).

Original entry on oeis.org

1, 19, 362, 6897, 131405, 2503592, 47699653, 908796999, 17314842634, 329890807045, 6285240176489, 119749454160336, 2281524869222873, 43468721969394923, 828187242287726410, 15779026325436196713, 300629687425575463957, 5727743087411370011896
Offset: 0

Views

Author

Bruno Berselli, Jun 04 2014

Keywords

Comments

a(n+1)/a(n) tends to (19 + sqrt(365))/2.
a(n) equals the number of words of length n on alphabet {0,1,...,19} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 03 2023: (Start)
Also called the 19-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 19 kinds of squares available. (End)

Crossrefs

Row n=19 of A073133, A172236 and A352361 and column k=19 of A157103.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), this sequence (k=19), A041181 (k=20). Also, many other sequences are in the OEIS with even k greater than 20 (denominators of continued fraction convergents to sqrt((k/2)^2+1)).

Programs

  • Magma
    [n le 2 select 19^(n-1) else 19*Self(n-1)+Self(n-2): n in [1..20]];
    
  • Mathematica
    RecurrenceTable[{a[n] == 19 a[n - 1] + a[n - 2], a[0] == 1, a[1] == 19}, a, {n, 0, 20}]
  • Maxima
    a[0]:1$ a[1]:19$ a[n]:=19*a[n-1]+a[n-2]$ makelist(a[n], n, 0, 20);
    
  • PARI
    v=vector(20); v[1]=1; v[2]=19; for(i=3, #v, v[i]=19*v[i-1]+v[i-2]); v
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    a = recur_gen2(1,19,19,1)
    [next(a) for i in (0..20)]

Formula

G.f.: 1/(1 - 19*x - x^2).
a(n) = (-1)^n*a(-n-2) = ((19 + sqrt(365))^(n+1)-(19 - sqrt(365))^(n+1))/(2^(n+1)*sqrt(365)).
a(n) = F(n+1, 19), the (n+1)-th Fibonacci polynomial evaluated at x = 19.
a(n)*a(n-2) - a(n-1)^2 = (-1)^n, with a(-2)=1, a(-1)=0.

A140455 13-Fibonacci sequence.

Original entry on oeis.org

0, 1, 13, 170, 2223, 29069, 380120, 4970629, 64998297, 849948490, 11114328667, 145336221161, 1900485203760, 24851643870041, 324971855514293, 4249485765555850, 55568286807740343, 726637214266180309
Offset: 0

Views

Author

R. J. Mathar, Jul 22 2008

Keywords

Comments

The k-Fibonacci sequences for k=2..12 are A000129, A006190, A001076, A052918, A005668, A054413, A041025, A099371, A041041, A049666, A041061. This here is k=13. k=14 is A041085, k=16 A041113, k=18 A041145, k=20 A041181, k=22 A041221.
For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 13's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,13} avoiding runs of zeros of odd length. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 21 2023: (Start)
Also called the 13-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 13 kinds of squares available. (End)

Crossrefs

Row n=13 of A073133, A172236 and A352361 and column k=13 of A157103.

Programs

  • Maple
    F := proc(n,k) coeftayl( x/(1-k*x-x^2),x=0,n) ; end: for n from 0 to 20 do printf("%d,",F(n,13)) ; od:
  • Mathematica
    LinearRecurrence[{13, 1}, {0, 1}, 30] (* Vincenzo Librandi, Nov 17 2012 *)
  • Sage
    [lucas_number1(n,13,-1) for n in range(0, 18)] # Zerinvary Lajos, Apr 29 2009

Formula

O.g.f.: x/(1-13*x-x^2).
a(n) = 13*a(n-1) + a(n-2).
a(n-r)*a(n+r) - a(n)^2 = (-1)^(n+1-r)*a(r)^2.
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n,2i+1)*13^(n-1-2*i)*(13^2+4)^i/2^(n-1).
a(n) = ((13+sqrt(173))^n - (13-sqrt(173))^n)/(2^n*sqrt(173)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2*n) = 13*A097844(n), a(2*n+1) = A098244(n).
a(3*n+1) = A041319(5*n), a(3*n+2) = A041319(5*n+3), a(3*n+3) = 2*A041319(5*n+4).
Limit_{k->oo} a(n+k)/a(k) = (A088316(n) + A140455(n)*sqrt(173))/2.
Limit_{n->oo} A088316(n)/A140455(n) = sqrt(173). (End)

A040012 Continued fraction for sqrt(17).

Original entry on oeis.org

4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 22/45. - Elmo R. Oliveira, Feb 06 2024

Examples

			4.123105625617660549821409855... = 4 + 1/(8 + 1/(8 + 1/(8 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Pages 275-276.

Crossrefs

Cf. A041024/A041025 (convergents), A010473 (decimal expansion), A248245 (Egyptian fraction).
Cf. A040000.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[17],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},100,8] (* Harvey P. Dale, Jun 22 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 37000); x=contfrac(sqrt(17)); for (n=0, 20000, write("b040012.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

a(n) = 4*A040000(n). - Stefano Spezia, May 14 2023
From Elmo R. Oliveira, Feb 06 2024: (Start)
a(n) = 8 for n >= 1.
G.f.: 4*(1+x)/(1-x).
E.g.f.: 8*exp(x) - 4. (End)

A154597 a(n) = 15*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 15, 226, 3405, 51301, 772920, 11645101, 175449435, 2643386626, 39826248825, 600037119001, 9040383033840, 136205782626601, 2052127122432855, 30918112619119426, 465823816409224245, 7018275358757483101, 105739954197771470760, 1593117588325329544501
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009

Keywords

Comments

Limit_{n -> infinity} a(n)/a(n-1) = (15 + sqrt(229))/2. - Klaus Brockhaus, Oct 07 2009
For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 15's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n - 1 on alphabet {0,1,...,15} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 30 2023: (Start)
Also called the 15-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 15 kinds of squares available. (End)

Crossrefs

Row n=15 of A073133, A172236 and A352361 and column k=15 of A157103.
First bisection is A098247.
Cf. A166125 (decimal expansion of sqrt(229)), A166126 (decimal expansion of (15 + sqrt(229))/2).
Cf. also A041427, A090301, A098245.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), this sequence (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-229); S:=[ ((15+r)^n-(15-r)^n)/(2^n*r): n in [1..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
    
  • Magma
    [n le 2 select n-1 else 15*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 20 2024
    
  • Mathematica
    LinearRecurrence[{15,1}, {0,1}, 31] (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
    CoefficientList[Series[x/(1-15*x-x^2), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x/(1-15*x-x^2))) \\ G. C. Greubel, Apr 16 2017
    
  • SageMath
    def A154597(n): return (-i)^(n-1)*chebyshev_U(n-1, 15*i/2)
    [A154597(n) for n in range(31)] # G. C. Greubel, Sep 20 2024

Formula

G.f.: x/(1 - 15*x - x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 07 2009
a(n) = ((15 + sqrt(229))^n - (15 - sqrt(229))^n)/(2^n*sqrt(229)).
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k -> infinity} a(n+k)/a(k) = (A090301(n) + a(n)*sqrt(229))/2.
Limit_{n -> infinity} A090301(n)/a(n) = sqrt(229).
a(2n+1) = 15*A098245(n-1).
a(3n+1) = A041427(5n), a(3n+2) = A041427(5n+3), a(3n+3) = 2*A041427(5n+4). (End)
E.g.f.: (2/sqrt(229))*exp(15*x/2)*sinh(sqrt(229)*x/2). - G. C. Greubel, Sep 20 2024

Extensions

Extended beyond a(7) by Klaus Brockhaus and Philippe Deléham, Jan 12 2009
Name from Philippe Deléham, Jan 12 2009
Edited by Klaus Brockhaus, Oct 07 2009
Missing a(0) added by Jianing Song, Jan 29 2019

A078988 Chebyshev sequence with Diophantine property.

Original entry on oeis.org

1, 65, 4289, 283009, 18674305, 1232221121, 81307919681, 5365090477825, 354014663616769, 23359602708228929, 1541379764079492545, 101707704826538279041, 6711167138787446924161, 442835323455144958715585, 29220420180900779828304449, 1928104896615996323709378049
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

Bisection (even part) of A041025.
(4*A078989(n))^2 - 17*a(n)^2 = -1 (Pell -1 equation, see A077232-3).
Starting with a(1), hypotenuses of primitive Pythagorean triples in A195619 and A195620. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
		

Crossrefs

Row 66 of array A094954.
Cf. A097316 for S(n, 66).
Row 4 of array A188647.

Programs

  • GAP
    a:=[1,65];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1, 65]; [n le 2 select I[n] else 66*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-66x+x^2), {x,0,20}], x] (* Michael De Vlieger, Apr 15 2019 *)
    LinearRecurrence[{66,-1}, {1,65}, 21] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    Vec((1-x)/(1-66*x+x^2) + O(x^20)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    ((1-x)/(1-66*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-x)/(1-66*x+x^2).
a(n) = T(2*n+1, sqrt(17))/sqrt(17) = ((-1)^n)*S(2*n, 8*i) = S(n, 66) - S(n-1, 66) with i^2=-1 and T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
a(n) = A041025(2*n).
a(n) = 66*a(n-1) - a(n-2) for n>1 ; a(0)=1, a(1)=65. - Philippe Deléham, Nov 18 2008

A041024 Numerators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041025(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 17*b^2 = +1, a(2*n) with b(2*n) := A041025(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 17*b^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = 4*S(2*n,2*sqrt(17)) = 4*A078989(n), n >= 0 and a(2*n+1) = T(n+1,33), n >= 0, with S(n,x), resp. T(n,x), Chebyshev's polynomials of the second, resp. first kind. See A049310, resp. A053120. - Wolfdieter Lang, Jan 10 2003

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[17],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
    LinearRecurrence[{8, 1}, {4, 33}, 25] (* Sture Sjöstedt, Dec 07 2011 *)
    CoefficientList[Series[(4 + x)/(1 - 8 x - x^2), {x, 0, 30}], x]  (* Vincenzo Librandi_, Oct 28 2013 *)

Formula

G.f.: (4+x)/(1-8*x-x^2).
a(n) = 4*A041025(n) + A041025(n-1).
a(n) = ((-i)^(n+1))*T(n+1, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
a(n) = 8*a(n-1) + a(n-2), n > 1. - Philippe Deléham, Nov 20 2008
a(n) = ((4 + sqrt(17))^n + (4 - sqrt(17))^n)/2. - Sture Sjöstedt, Dec 08 2011

A015454 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 1, 9, 73, 593, 4817, 39129, 317849, 2581921, 20973217, 170367657, 1383914473, 11241683441, 91317382001, 741780739449, 6025563297593, 48946287120193, 397595860259137, 3229713169193289, 26235301213805449, 213112122879636881
Offset: 0

Views

Author

Keywords

Comments

a(n)/a(n-1) tends to (8 + 2*sqrt(17))/2 = exp ArcSinh 4 = A176458. - Gary W. Adamson, Dec 26 2007
For n>=1, row sums of triangle for numbers 8^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 13 2012
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,8} containing no subwords ii, (i=0,1,...,7). - Milan Janjic, Jan 31 2015
a(n+1) is the number of nonary sequences of length n such that no two consecutive terms have distance 5. - David Nacin, May 31 2017

Crossrefs

Row m=8 of A135597.

Programs

  • Magma
    [n le 2 select 1 else 8*Self(n-1) + Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
    
  • Mathematica
    LinearRecurrence[{8, 1}, {1, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
    CoefficientList[Series[(1-7*x)/(1-8*x-x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec((1-7*x)/(1-8*x-x^2)) \\ G. C. Greubel, Dec 19 2017

Formula

a(n) = 8*a(n-1) + a(n-2).
a(n) = Sum_{k=0..n} 7^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
G.f.: (1-7*x)/(1-8*x-x^2). - Philippe Deléham, Nov 20 2008
For n>=2, a(n) = F_n(8)+F_(n+1)(8), where F_n(x) is Fibonacci polynomial (cf.A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A041025(n) -7*A041025(n-1). - R. J. Mathar, Jul 06 2012

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A213897 Fixed points of a sequence h(n) defined by the minimum number of 8's in the relation n*[n,8,8,...,8,n] = [x,...,x] between simple continued fractions.

Original entry on oeis.org

3, 7, 23, 31, 71, 107, 131, 139, 163, 199, 211, 227, 283, 347, 367, 379, 419, 431, 439, 487, 499, 503, 547, 571, 607, 619, 643, 691, 719, 751, 787, 811, 823, 827, 907, 911, 983, 991, 1031, 1051, 1091, 1151, 1163, 1231, 1303, 1319, 1367, 1399, 1423, 1439, 1459, 1499
Offset: 1

Views

Author

Art DuPre, Jun 24 2012

Keywords

Comments

In a variant of A213891, multiply n by a number with simple continued fraction [n,8,8,..,8,n] and increase the number of 8's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are
2 * [2, 8, 2] = [4, 4, 4],
3 * [3, 8, 8, 8, 3] = [9, 2, 1, 2, 2, 2, 1, 2, 9],
4 * [4, 8, 4] = [16, 2, 16],
5 * [5, 8, 8, 5] = [25, 1, 1, 1, 1, 1, 1, 25],
6 * [6, 8, 8, 8, 6] = [36, 1, 2, 1, 4, 1, 2, 1, 36],
7 * [7, 8, 8, 8, 8, 8, 8, 8, 7] = [49, 1, 6, 4, 3, 2, 1, 2, 1, 2, 3, 4, 6, 1, 49].
The number of 8's needed defines the sequence h(n) = 1, 3, 1, 2, 3, 7, 1, 11, 5,.. (n>=2).
The current sequence contains the fixed points of h, i. e., those n where h(n)=n.
We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the Fibonacci sequences (sequences satisfying f(n)=f(n-1)+f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n)=8*f(n-1)+f(n-2), A041025, A015454, etc. This would mean that a prime is in the sequence A213897 if and only if it divides some term in each of the sequences satisfying f(n)=8*f(n-1)+f(n-2).
The sequence h() is recorded as A262218. - M. F. Hasler, Sep 15 2015

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[8, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)
  • PARI
    {a(n) = local(t, m=1); if( n<2, 0, while( 1,
       t = contfracpnqn( concat([n, vector(m,i,8), n]));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				
Previous Showing 11-20 of 26 results. Next