cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A046954 Numbers k such that 6*k + 1 is nonprime.

Original entry on oeis.org

0, 4, 8, 9, 14, 15, 19, 20, 22, 24, 28, 29, 31, 34, 36, 39, 41, 42, 43, 44, 48, 49, 50, 53, 54, 57, 59, 60, 64, 65, 67, 69, 71, 74, 75, 78, 79, 80, 82, 84, 85, 86, 88, 89, 92, 93, 94, 97, 98, 99, 104, 106, 108, 109, 111, 113, 114, 116, 117, 119, 120, 124, 127, 129, 130, 132, 133, 134, 136, 139, 140
Offset: 1

Views

Author

Keywords

Comments

Equals A171696 U A121763; A121765 U A171696 = A046953; A121763 U A121765 = A067611 where A067611 U A002822 U A171696 = A001477. - Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
These numbers (except 0) can be written as 6xy +-(x+y) for x > 0, y > 0. - Ron R Spencer, Aug 01 2016

Examples

			a(2)=8 because 6*8 + 1 = 49, which is composite.
		

Crossrefs

Cf. A047845 (2n+1), A045751 (4n+1), A127260 (8n+1).
Cf. A046953, A008588, A016921, subsequence of A067611, complement of A024899.

Programs

  • GAP
    Filtered([0..250], k-> not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
  • Haskell
    a046954 n = a046954_list !! (n-1)
    a046954_list = map (`div` 6) $ filter ((== 0) . a010051' . (+ 1)) [0,6..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [0..250] | not IsPrime(6*n+1)]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    remove(k-> isprime(6*k+1), [$0..140])[]; # Muniru A Asiru, Feb 22 2019
  • Mathematica
    a = Flatten[Table[If[PrimeQ[6*n + 1] == False, n, {}], {n, 0, 50}]] (* Roger L. Bagula, May 17 2007 *)
    Select[Range[0, 200], !PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Sep 27 2013 *)
  • PARI
    is(n)=!isprime(6*n+1) \\ Charles R Greathouse IV, Aug 01 2016
    
  • Sage
    [n for n in (0..250) if not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
    

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar
Corrected by Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
Corrected by Vincenzo Librandi, Sep 27 2013

A095277 Numbers k such that 4k + 3 is composite.

Original entry on oeis.org

3, 6, 8, 9, 12, 13, 15, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 42, 43, 45, 46, 48, 50, 51, 53, 54, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Comments

Terms can be written as (4xy +- (x-y)) - 1 for x > 0, y > 0. - Ron R Spencer, Aug 01 2016
Numbers k such that (4*k)!/(4*k + 3) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the positive terms in the following triangular array:
  *;
  3,  *;
  *,  8,  *;
  6,  *, 15,  *;
  *, 13,  *, 24,  *;
  9,  *, 22,  *, 35,  *;
  *, 18,  *, 33,  *, 48,  *;
etc., where * marks the noninteger values of (2*h*k + k + h-1)/2 with h >= k >= 1. - _Vincenzo Librandi_, Apr 22 2014
		

Crossrefs

Complement of A095278. Cf. also A045751, A014076, A153170, A153088, A153329, A153343.

Programs

  • Magma
    [n: n in [0..110] |not IsPrime(4*n+3)]; // Vincenzo Librandi, Apr 22 2014\
    
  • Maple
    for n from 0 to 100 do
    if irem(factorial(4*n), 4*n+3) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[150],!PrimeQ[4#+3]&] (* Harvey P. Dale, Jul 04 2011 *)
  • PARI
    is(n)=!isprime(4*n+3) \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = (A091236(n) - 3)/4.

A153088 Numbers k such that 5*k - 1 is not prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93
Offset: 1

Views

Author

Vincenzo Librandi, Jan 03 2009

Keywords

Examples

			Distribution of the even terms in the following triangular array:
   2;
   *,   *;
   *,   *,  10;
   *,   *,   *,   *;
   *,   *,   *,  20,   *;
   8,   *,   *,   *,   *,  34;
   *,   *,   *,   *,   *,   *,   *;
   *,   *,  24,   *,   *,   *,   *,  58;
   *,   *,   *,   *,  42,   *,   *,   *,   *;
   *,   *,   *,  38,   *,   *,   *,   *,  80,   *;
  14,   *,   *,   *,   *,  60,   *,   *,   *,   *, 106;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h + 2)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100] | not IsPrime(5*n-1)]; // Vincenzo Librandi, Oct 11 2012
  • Maple
    # produces the sequence apart from the initial terms 1 and 2
    for n from 0 to 100 do
      if irem(factorial(5*n), 5*n+4) = 0 then print(n+1); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[1, 200], !PrimeQ[5 # - 1] &] (* Vincenzo Librandi, Oct 11 2012 *)

Formula

a(n) = A153343(n) + 1. - Peter Bala, Jan 25 2017

Extensions

First 29 replaced with 20, 4 replaced with 44, extended by R. J. Mathar, Jan 05 2009
Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010

A153170 Numbers k such that 3*k + 2 is not prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

Contains the positive even numbers (A005843) and the odd numbers of the form 2*A059324(.) + 1. - R. J. Mathar, Nov 27 2010
Numbers k such that (3*k)!/(3*k + 2) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the odd terms in the following triangular array:
  *;
  *,   *;
  *,  11,   *;
  *,   *,   *,   *;
  *,   *,  25,   *,   *;
  *,  21,   *,   *,  47,   *;
  *,   *,   *,   *,   *,   *,   *;
  *,   *,  39,   *,   *,  73,   *,   *;
  *,  31,   *,   *,  69,   *,   *, 107,   *;
  *,   *,   *,   *,   *,   *,   *,   *,   *,   *;
  *,   *,  53,   *,   *,  99,   *,   *, 145,   *,   *;
  *,  41,   *,   *,  91,   *,   *, 141,   *,   *, 191,   *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [1..110] | not IsPrime(3*n + 2)]; // Vincenzo Librandi, Oct 11 2012
  • Maple
    for n from 0 to 100 do
    if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* Vincenzo Librandi, Oct 11 2012 *)
  • PARI
    for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\  Joerg Arndt, Nov 27 2010
    

Extensions

Edited by N. J. A. Sloane, Jun 23 2010

A153329 Numbers k such that 5*k + 1 is not prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 87
Offset: 1

Views

Author

Vincenzo Librandi, Dec 23 2008

Keywords

Comments

Numbers k such that (5*k)!/(5*k + 1) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the even terms in the following triangular array:
   *;
   *,  *;
   4,  *,  *;
   *,  *,  *, 16;
   *,  *,  *,  *, 24;
   *,  *, 18,  *,  *,  *;
   *,  *,  *,  *,  *,  *,  *;
  10,  *,  *,  *,  *, 44,  *,  *;
   *,  *,  *, 34,  *,  *,  *,  *, 72;
   *,  *,  *,  *, 46,  *,  *,  *,  *, 88;
   *,  *, 32,  *,  *,  *,  *, 78,  *,  *,  *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(5*n + 1)]; // Vincenzo Librandi, Jan 12 2013
  • Maple
    for n from 0 to 100 do
    if irem(factorial(5*n), 5*n+1) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[0, 200], !PrimeQ[5*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010
0 added by Arkadiusz Wesolowski, Aug 03 2011

A153343 Numbers k such that 5*k + 4 is not prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 86, 88
Offset: 1

Views

Author

Vincenzo Librandi, Dec 24 2008

Keywords

Comments

Apart from a(0) = 0 and a(1) = 1 this sequence comprises those numbers k such that (5*k)!/(5*k + 4) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the odd terms in the following triangular array:
   1;
   *,   *;
   *,   *,   9;
   *,   *,   *,   *;
   *,   *,   *,  19,   *;
   7,   *,   *,   *,   *,  33;
   *,   *,   *,   *,   *,   *,   *;
   *,   *,  23,   *,   *,   *,   *,  57;
   *,   *,   *,   *,  41,   *,   *,   *,   *;
   *,   *,   *,  37,   *,   *,   *,   *,  79,   *;
  13,   *,   *,   *,   *,  59,   *,   *,   *,   *,  105;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 3)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(5*n + 4)]; // Vincenzo Librandi, Jan 12 2013
  • Maple
    # produces the sequence apart from the initial terms 0 and 1
    for n from 0 to 100 do
    if irem(factorial(5*n), 5*n+4) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[0, 200], !PrimeQ[5*# + 4]&] (* Vincenzo Librandi, Jan 12 2013 *)

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010
0 added by Arkadiusz Wesolowski, Aug 03 2011

A094897 If 4*n+1 is not prime and 4*n+3 is prime then a(n)=4*n+3, else a(n)=0.

Original entry on oeis.org

3, 0, 11, 0, 0, 23, 0, 0, 0, 0, 0, 47, 0, 0, 59, 0, 67, 71, 0, 79, 83, 0, 0, 0, 0, 0, 107, 0, 0, 0, 0, 127, 131, 0, 0, 0, 0, 0, 0, 0, 163, 167, 0, 0, 179, 0, 0, 191, 0, 0, 0, 0, 211, 0, 0, 223, 227, 0, 0, 239, 0, 0, 251, 0, 0, 263, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 307, 311, 0, 0, 0, 0, 331, 0
Offset: 0

Views

Author

Roger L. Bagula, Jun 14 2004

Keywords

Crossrefs

Programs

  • Magma
    [IsPrime(4*n+3) and not IsPrime(4*n+1) select 4*n+3 else 0:n in [0..85]]; // Marius A. Burtea, Nov 15 2019
  • Maple
    A094897 := proc(n)
        if not isprime(4*n+1) and isprime(4*n+3) then
            4*n+3;
        else
            0;
        end if;
    end proc:
    seq(A094897(n),n=0..86) ; # R. J. Mathar, Nov 15 2019
  • Mathematica
    a=Table[If[PrimeQ[4*n+1]==False&&PrimeQ[4*n+3]==True, 4*n+3, 0], {n, 0, 200}]

A153309 Numbers k such that 3*k + 1 is not prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 95
Offset: 1

Views

Author

Vincenzo Librandi, Dec 23 2008

Keywords

Comments

Terms (except 0) can be written as 3xy +- (x + y) for x > 0, y > 0. - Ron R Spencer, Aug 01 2016
Apart from a(2) = 1 the sequence comprises those numbers k such that (3*k)!/(3*k + 1) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the even terms in the following triangular array:
                        *;
                      *   8;
                    *   *  16;
                  *   *   *   *;
                *  18   *   *  40;
              *   *  30   *   *  56;
            *   *   *   *   *   *   *;
          *  28   *   *  62   *   *  96;
        *   *  44   *   *  82   *   *  120;
      *   *   *   *   *   *   *   *   *   *;
    *  38   *   *  84   *   *  130  *   *  176;
  *   *  58   *   *  108  *   *  158  *   *  208;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(3*n + 1)]; // Vincenzo Librandi, Jan 12 2013
    
  • Maple
    # produces the sequence apart from the term equal to 1
    for n from 0 to 100 do
    if irem(factorial(3*n), 3*n+1) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[0, 200], !PrimeQ[3*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)
  • PARI
    is(n)=!isprime(3*n+1) \\ Charles R Greathouse IV, Aug 01 2016

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010
0 added by Arkadiusz Wesolowski, Jun 25 2011

A153085 Numbers k such that 4*k + 5 is not prime.

Original entry on oeis.org

1, 4, 5, 7, 10, 11, 13, 15, 16, 18, 19, 20, 22, 25, 28, 29, 30, 31, 32, 34, 35, 37, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64, 65, 67, 70, 71, 73, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 90, 91, 93, 94, 95, 97, 100, 102, 103, 105, 106
Offset: 1

Views

Author

Vincenzo Librandi, Dec 18 2008

Keywords

Comments

Let p=2n+1 be an odd number, then A140869(n,n) = (p^2-5)/4 = A028387(n-1).
One less than the associated entry in A045751: a(n) = A045751(n+1)-1. - R. J. Mathar, Jan 05 2011

Examples

			Triangle begins:
1;
*, 5;
4, *, 11;
*, 10, *, 19;
7, *, 18, *, 29;
*, 15, *, 28, *, 41;
where * mark the entries in A140869 which are non-integer if floor(.) is not applied there.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..120] | not IsPrime(4*n + 5)]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    Select[Range[200], !PrimeQ[4 # + 5] &] (* Vincenzo Librandi, Oct 15 2012 *)

A127260 Indices n of odd numbers of the form 8*n+1 that are not primes.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 8, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 52, 53, 55, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 73, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 102
Offset: 1

Views

Author

Roger L. Bagula, May 17 2007

Keywords

Comments

Could be generated from A045751 by removing all odd terms there, then halving each remaining term. - R. J. Mathar, Jun 08 2007

Crossrefs

Cf. A045751.

Programs

  • Maple
    isA127260 := proc(n) not isprime(8*n+1) ; end: for n from 0 to 200 do if isA127260(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 08 2007
  • Mathematica
    a = Flatten[Table[If[PrimeQ[8*n + 1] == False, n, {}], {n, 0, 50}]]

Extensions

More terms from R. J. Mathar, Jun 08 2007
Showing 1-10 of 13 results. Next