cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A350945 Heinz numbers of integer partitions of which the number of even parts is equal to the number of even conjugate parts.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 36, 38, 39, 41, 44, 47, 56, 57, 58, 59, 66, 67, 68, 73, 74, 75, 80, 83, 84, 86, 87, 92, 96, 97, 102, 103, 104, 106, 109, 111, 120, 122, 124, 125, 127, 128, 129, 137, 138, 142, 144, 149, 152, 156
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   5: (3)
   6: (2,1)
   8: (1,1,1)
   9: (2,2)
  11: (5)
  14: (4,1)
  17: (7)
  20: (3,1,1)
  21: (4,2)
  23: (9)
  24: (2,1,1,1)
		

Crossrefs

These partitions are counted by A350948.
These are the positions of 0's in A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?EvenQ]==Count[primeMS[#],?EvenQ]&]

Formula

A257992(a(n)) = A350847(a(n)).

A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 15, 18, 20, 30, 35, 49, 54, 55, 56, 70, 75, 77, 81, 84, 88, 90, 98, 108, 110, 112, 125, 132, 135, 143, 154, 162, 168, 169, 176, 180, 187, 210, 221, 260, 264, 270, 286, 294, 315, 323, 330, 338, 340, 350, 361, 363, 364, 374, 391, 416, 420
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   6: (2,1)
   9: (2,2)
  10: (3,1)
  12: (2,1,1)
  15: (3,2)
  18: (2,2,1)
  20: (3,1,1)
  30: (3,2,1)
  35: (4,3)
  49: (4,4)
  54: (2,2,2,1)
		

Crossrefs

These partitions are counted by A277103.
The even rank case is A345196.
The conjugate version is A350943, counted by A277579.
These are the positions of 0's in A350951, even A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # even conj parts = # odd conj parts, counted by A045931.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?OddQ]==Count[primeMS[#],?OddQ]&]

Formula

A257991(a(n)) = A344616(a(n)).

A350948 Number of integer partitions of n with as many even parts as even conjugate parts.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 7, 6, 10, 10, 18, 19, 27, 31, 40, 47, 65, 75, 98, 115, 142, 170, 217, 257, 316, 376, 458, 544, 671, 792, 952, 1129, 1351, 1598, 1919, 2259, 2681, 3155, 3739, 4384, 5181, 6064, 7129, 8331, 9764, 11380, 13308, 15477, 18047, 20944
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(0) = 1 through a(8) = 6 partitions (empty column indicated by dot):
  ()  (1)  .  (3)    (22)  (5)      (42)    (7)        (62)
              (21)         (41)     (321)   (61)       (332)
              (111)        (311)    (2211)  (511)      (521)
                           (2111)           (4111)     (4211)
                           (11111)          (31111)    (32111)
                                            (211111)   (221111)
                                            (1111111)
For example, both (3,2,1,1,1) and its conjugate (5,2,1) have exactly 1 even part, so are counted under a(8).
		

Crossrefs

Comparing even to odd parts gives A045931, ranked by A325698.
The odd version is A277103, even rank case A345196, ranked by A350944.
Comparing even to odd conjugate parts gives A277579, ranked by A349157.
Comparing product of parts to product of conjugate parts gives A325039.
These partitions are ranked by A350945, the zeros of A350950.
A000041 counts integer partitions, strict A000009.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A116482 counts partitions by number of even (or even conjugate) parts.
A122111 represents partition conjugation using Heinz numbers.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A351976: # even = # even conj, # odd = # odd conj, ranked by A350949.
A351977: # even = # odd, # even conj = # odd conj, ranked by A350946.
A351978: # even = # odd = # even conj = # odd conj, ranked by A350947.
A351981: # even = # odd conj, # odd = # even conj, ranked by A351980.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A239261 Number of partitions of n having (sum of odd parts) = (sum of even parts).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 70, 0, 0, 0, 165, 0, 0, 0, 330, 0, 0, 0, 704, 0, 0, 0, 1380, 0, 0, 0, 2688, 0, 0, 0, 4984, 0, 0, 0, 9394, 0, 0, 0, 16665, 0, 0, 0, 29970, 0, 0, 0, 52096, 0, 0, 0, 90090, 0, 0, 0, 152064, 0, 0, 0
Offset: 0

Views

Author

Clark Kimberling, Mar 13 2014

Keywords

Examples

			a(8) counts these 4 partitions:  431, 41111, 3221, 221111.
From _Gus Wiseman_, Oct 24 2023: (Start)
The a(0) = 1 through a(12) = 12 partitions:
  ()  .  .  .  (211)  .  .  .  (431)     .  .  .  (633)
                               (3221)             (651)
                               (41111)            (4332)
                               (221111)           (5421)
                                                  (33222)
                                                  (52221)
                                                  (63111)
                                                  (432111)
                                                  (3222111)
                                                  (6111111)
                                                  (42111111)
                                                  (222111111)
(End)
		

Crossrefs

The LHS (sum of odd parts) is counted by A113685.
The RHS (sum of even parts) is counted by A113686.
Without all the zeros we have a(4n) = A249914(n).
The strict case (without zeros) is A255001.
The Heinz numbers of these partitions are A366748, see also A019507.
A000009 counts partitions into odd parts, ranks A066208.
A035363 counts partitions into even parts, ranks A066207.

Programs

  • Mathematica
    z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]
    t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)
    t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)
    t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)
    t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)
    t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)
    (* Peter J. C. Moses, Mar 12 2014 *)

Formula

A239260(n) + a(n) + A239262(n) = A000041(n).
From David A. Corneth, Oct 25 2023: (Start)
a(4*n) = A000009(2*n) * A000041(n) for n >= 0.
a(4*n + r) = 0 for n >= 0 and r in {1, 2, 3}. (End)

Extensions

More terms from Alois P. Heinz, Mar 15 2014

A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts.

Original entry on oeis.org

1, 3, 6, 7, 13, 14, 18, 19, 26, 27, 29, 36, 37, 38, 42, 43, 53, 54, 58, 61, 63, 70, 71, 74, 78, 79, 84, 86, 89, 101, 105, 106, 107, 113, 114, 117, 122, 126, 130, 131, 139, 140, 142, 151, 156, 158, 162, 163, 171, 173, 174, 178, 181, 190, 193, 195, 199, 202, 210
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   3: (2)
   6: (2,1)
   7: (4)
  13: (6)
  14: (4,1)
  18: (2,2,1)
  19: (8)
  26: (6,1)
  27: (2,2,2)
  29: (10)
  36: (2,2,1,1)
  37: (12)
  38: (8,1)
  42: (4,2,1)
For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence.
		

Crossrefs

These partitions are counted by A277579.
The conjugate version is A349157, also counted by A277579.
These are the positions of 0's in A350942.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]

Formula

A350847(a(n)) = A257991(a(n)).

A350942 Number of odd parts minus number of even conjugate parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 0, 3, -2, 1, 1, 2, 0, 0, -1, 3, 1, 0, 0, 3, -2, 1, 1, 2, -1, 0, 0, 2, 0, 1, 1, 5, -1, 1, -2, 0, 0, 0, -2, 3, 1, 0, 0, 3, 1, 1, 1, 4, -4, 1, -1, 2, 0, 0, -1, 2, -2, 0, 1, 1, 0, 1, 0, 5, -2, 1, 1, 3, -1, 0, 0, 2, 1, 0, 1, 2, -3, 0, 0, 5, -2, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			First positions n such that a(n) = 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, together with their prime indices, are:
  192: (2,1,1,1,1,1,1)
   32: (1,1,1,1,1)
   48: (2,1,1,1,1)
    8: (1,1,1)
   12: (2,1,1)
    2: (1)
    1: ()
   15: (3,2)
    9: (2,2)
   77: (5,4)
   49: (4,4)
  221: (7,6)
  169: (6,6)
		

Crossrefs

The conjugate version is A350849.
This is a hybrid of A195017 and A350941.
Positions of 0's are A350943.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325698: # of even parts = # of odd parts.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # even conj parts = # odd conj parts, counted by A045931.
A350943: # of even conjugate parts = # of odd parts, counted by A277579.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[primeMS[n],?OddQ]-Count[conj[primeMS[n]],?EvenQ],{n,100}]

A350947 Heinz numbers of integer partitions with the same number of even parts, odd parts, even conjugate parts, and odd conjugate parts.

Original entry on oeis.org

1, 6, 84, 210, 490, 525, 2184, 2340, 5460, 9464, 12012, 12740, 12870, 13650, 14625, 19152, 22308, 30030, 34125, 43940, 45144, 55770, 59150, 66066, 70070, 70785, 75075, 79625, 82992, 88920
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()
      6: (2,1)
     84: (4,2,1,1)
    210: (4,3,2,1)
    490: (4,4,3,1)
    525: (4,3,3,2)
   2184: (6,4,2,1,1,1)
   2340: (6,3,2,2,1,1)
   5460: (6,4,3,2,1,1)
   9464: (6,6,4,1,1,1)
  12012: (6,5,4,2,1,1)
  12740: (6,4,4,3,1,1)
  12870: (6,5,3,2,2,1)
  13650: (6,4,3,3,2,1)
  14625: (6,3,3,3,2,2)
  19152: (8,4,2,2,1,1,1,1)
For example, the partition (6,6,4,1,1,1) has conjugate (6,3,3,3,2,2), and all four statistics are equal to 3, so 9464 is in the sequence.
		

Crossrefs

These partitions are counted by A351978.
There are four individual statistics:
- A257991 counts odd parts, conjugate A344616.
- A257992 counts even parts, conjugate A350847.
There are six possible pairings of statistics:
- A325698: # of even parts = # of odd parts, counted by A045931.
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350848: # of even conj parts = # of odd conj parts, counted by A045931.
- A350943: # of even conjugate parts = # of odd parts, counted by A277579.
- A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are three possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
- A351980, counted by A351981.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[1000],Count[primeMS[#],?EvenQ]==Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&]

Formula

A257992(a(n)) = A257991(a(n)) = A350847(a(n)) = A344616(a(n)).

A350949 Heinz numbers of integer partitions with as many even parts as even conjugate parts and as many odd parts as odd conjugate parts.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 294, 315, 350, 416, 441, 490, 525, 624, 660, 735, 924, 990, 1088, 1100, 1386, 1540, 1560, 1632, 1650, 1715, 2184, 2310, 2340, 2401, 2432, 2600, 3267, 3276, 3388, 3640, 3648, 3900, 4080, 4125, 5082, 5324, 5390
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     2: (1)
     6: (2,1)
     9: (2,2)
    20: (3,1,1)
    30: (3,2,1)
    56: (4,1,1,1)
    75: (3,3,2)
    84: (4,2,1,1)
   125: (3,3,3)
   176: (5,1,1,1,1)
   210: (4,3,2,1)
   264: (5,2,1,1,1)
   294: (4,4,2,1)
   315: (4,3,2,2)
   350: (4,3,3,1)
   416: (6,1,1,1,1,1)
		

Crossrefs

The second condition alone is A350944, counted by A277103.
The first condition alone is A350945, counted by A350948.
The case of all four statistics equal is A350947, counted by A351978.
These partitions are counted by A351976.
There are four other possible pairings of statistics:
- A045931: # even = # odd, ranked by A325698, strict A239241.
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
There are two other possible double-pairings of statistics:
- A350946, counted by A351977.
- A351980, counted by A351981.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.

Programs

Formula

Intersection of A350944 and A350945.
A257991(a(n)) = A344616(a(n)).
A257992(a(n)) = A350847(a(n)).
Closed under A122111 (conjugation).

A053253 Coefficients of the '3rd-order' mock theta function omega(q).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Empirical: a(n) is the number of integer partitions mu of 2n+1 such that the diagram of mu has an odd number of cells in each row and in each column. - John M. Campbell, Apr 24 2020
From Gus Wiseman, Jun 26 2022: (Start)
By Campbell's conjecture above that a(n) is the number of partitions of 2n+1 with all odd parts and all odd conjugate parts, the a(0) = 1 through a(5) = 8 partitions are (B = 11):
(1) (3) (5) (7) (9) (B)
(111) (311) (511) (333) (533)
(11111) (31111) (711) (911)
(1111111) (51111) (33311)
(3111111) (71111)
(111111111) (5111111)
(311111111)
(11111111111)
These partitions are ranked by A352143. (End)

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 15, 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053254, A053255, A261401.
Cf. A095913(n)=a(n-3).
Cf. A259094.
Conjectured to count the partitions ranked by A352143.
A069911 = strict partitions w/ all odd parts, ranked by A258116.
A078408 = partitions w/ all odd parts, ranked by A066208.
A117958 = partitions w/ all odd parts and multiplicities, ranked by A352142.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}]^2, {n, 0, 6}], {q, 0, 100}]
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x*O(x^n); polcoeff( sum(k=0, (sqrtint(2*n+1)-1)\2, A*=(x^(4*k)/(1-x^(2*k+1))^2 +x*O(x^(n-2*(k^2-k))))), n))} /* Michael Somos, Aug 18 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */

Formula

G.f.: omega(q) = Sum_{n>=0} q^(2*n*(n+1))/((1-q)*(1-q^3)*...*(1-q^(2*n+1)))^2.
G.f.: Sum_{k>=0} x^k/((1-x)(1-x^3)...(1-x^(2k+1))). - Michael Somos, Aug 18 2006
G.f.: (1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
Conjectural g.f.: 1/(1 - x)*( 1 + Sum_{n >= 0} x^(3*n+1) /((1 - x)*(1 - x^3)*...*(1 - x^(2*n+1))) ). - Peter Bala, Nov 18 2024

A098123 Number of compositions of n with equal number of even and odd parts.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 6, 6, 24, 28, 60, 130, 190, 432, 770, 1386, 2856, 5056, 9828, 18918, 34908, 68132, 128502, 244090, 470646, 890628, 1709136, 3271866, 6238986, 11986288, 22925630, 43932906, 84349336, 161625288, 310404768, 596009494
Offset: 0

Views

Author

Vladeta Jovovic, Sep 24 2004

Keywords

Examples

			From _Gus Wiseman_, Jun 26 2022: (Start)
The a(0) = 1 through a(7) = 6 compositions (empty columns indicated by dots):
  ()  .  .  (12)  .  (14)  (1122)  (16)
            (21)     (23)  (1212)  (25)
                     (32)  (1221)  (34)
                     (41)  (2112)  (43)
                           (2121)  (52)
                           (2211)  (61)
(End)
		

Crossrefs

For partitions: A045931, ranked by A325698, strict A239241 (conj A352129).
Column k=0 of A242498.
Without multiplicity: A242821, for partitions A241638 (ranked by A325700).
These compositions are ranked by A355321.
A047993 counts balanced partitions, ranked by A106529.
A108950/A108949 count partitions with more odd/even parts.
A130780/A171966 count partitions with more or as many odd/even parts.
Cf. A025178.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 26 2022 *)

Formula

a(n) = Sum_{k=floor(n/3)..floor(n/2)} C(2*n-4*k,n-2*k)*C(n-1-k,2*n-4*k-1).
Recurrence: n*(2*n-7)*a(n) = 2*(n-2)*(2*n-5)*a(n-2) + 2*(2*n-7)*(2*n-3)*a(n-3) - (n-4)*(2*n-3)*a(n-4). - Vaclav Kotesovec, May 01 2014
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.94696532812840456026081823863... is the root of the equation 1-4*d-2*d^2+d^4 = 0, c = 0.225563290820392765554898545739... is the root of the equation 43*c^4-18*c^2+8*c-1=0. - Vaclav Kotesovec, May 01 2014
G.f.: 1/sqrt(1 - 4*x^3/(1-x^2)^2). - Seiichi Manyama, May 01 2025
Previous Showing 11-20 of 59 results. Next