cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A219605 Square array T(n,k), read by antidiagonals: T(n,2*k) = T(n,2*k-1)*n, T(n,2*k+1) = T(n,2*k)+n, T(n,0) = 1.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 3, 6, 4, 1, 0, 3, 8, 12, 5, 1, 0, 4, 16, 15, 20, 6, 1, 0, 4, 18, 45, 24, 30, 7, 1, 0, 5, 36, 48, 96, 35, 42, 8, 1, 0, 5, 38, 144, 100, 175, 48, 56, 9, 1, 0, 6, 76, 147, 400, 180, 288, 63, 72, 10, 1, 0, 6, 78, 441, 404, 900, 294, 441
Offset: 0

Views

Author

Philippe Deléham, Apr 12 2013

Keywords

Examples

			Square array begins:
1..1....0....0....0....0....0....0.....0.....0...
1..2....2....3....3....4....4....5.....5.....5...
1..3....6....8...16...18...36...38....76....78...
1..4...12...15...45...48..144..147...441...444...
1..5...20...24...96..100..400..404..1616..1620...
1..6...30...35..175..180..900..905..4525..4530...
1..7...42...48..288..294.1764.1770.10620.10626...
1..8...56...63..441..448.3136.3143.22001.22008...
1..9...72...80..640..648.5184.5192.41536.41544...
1.10...90...99..891..900.8100.8109.72971.72980...
...
		

Programs

  • Mathematica
    t[n_, k_] /; n < 0 || k < 0 = 0; t[n_, 0] = 1; t[n_, 1] = n+1; t[0, k_ /; k > 1] = 0; t[n_?Positive, k_?EvenQ] := t[n, k] = t[n, k-1]*n; t[n_?Positive, k_?OddQ] := t[n, k] = t[n, k-1] + n; Table[t[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 19 2013 *)

Formula

T(n,0) = A000012(n).
T(n,1) = A000027(n).
T(n,2) = A002378(n+1).
T(n,3) = A005563(n).
T(n,4) = A152618(n+1).
T(n,5) = A045991(n+1).
T(n,6) = A035287(n+1).
T(0,k) = A019590(k+1).
T(1,k) = A008619(k+1).
T(2,k) = A123208(k).

A244309 a(n) = F(n)^3 - F(n)^2, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

0, 0, 0, 4, 18, 100, 448, 2028, 8820, 38148, 163350, 697048, 2965248, 12595048, 53440504, 226608900, 960530634, 4070452764, 17246835648, 73069580980, 309555981900, 1311374255620, 5555264316910, 23532984885744, 99688652356608, 422291386890000
Offset: 0

Views

Author

Colin Barker, Jun 25 2014

Keywords

Examples

			a(4) is 18 because F(4)^3 - F(4)^2 = 3^3 - 3^2 = 18.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)^3 - Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    CoefficientList[Series[2 x^3 (x^2 - x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[#^3 - #^2 &@ Fibonacci@ n, {n, 0, 25}] (* Michael De Vlieger, Mar 27 2016 *)
    LinearRecurrence[{5,2,-22,-4,14,-1,-1},{0,0,0,4,18,100,448},30] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    vector(50, n, fibonacci(n-1)^3-fibonacci(n-1)^2)
    

Formula

G.f.: 2*x^3*(x^2-x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000045(n)). - Michel Marcus, Jun 25 2014
a(n) = (F(3*n) - 3*(-1)^n*F(n))/5 - (L(2*n) - 2*(-1)^n)/5, where F=A000045 and L=A000032. - Ehren Metcalfe, Mar 26 2016

A244310 a(n) = L(n)^3 - L(n)^2, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

4, 0, 18, 48, 294, 1210, 5508, 23548, 101614, 433200, 1845738, 7840998, 33282564, 141149320, 598366458, 2535856048, 10745092894, 45524786370, 192866785668, 817050731748, 3461224027254, 14662350247600, 62111682111618, 263111844646798, 1114566304573444
Offset: 0

Views

Author

Colin Barker, Jun 25 2014

Keywords

Examples

			a(3) is 48 because L(3)^3 - L(3)^2 = 4^3 - 4^2 = 48.
		

Crossrefs

Programs

  • Magma
    [Lucas(n)^3 - Lucas(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    CoefficientList[Series[2 (x^6 - 8 x^5 + 17 x^4 + 23 x^3 + 5 x^2 - 10 x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[LucasL[n]^3 - LucasL[n]^2, {n,0,50}] (* G. C. Greubel, Oct 13 2018 *)
  • PARI
    lucas(n) = if(n==0, 2, 2*fibonacci(n-1)+fibonacci(n))
    vector(50, n, lucas(n-1)^3-lucas(n-1)^2)
    

Formula

G.f.: 2*(x^6-8*x^5+17*x^4+23*x^3+5*x^2-10*x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000032(n)). - Michel Marcus, Jun 25 2014

A286932 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 4, 0, 0, 1, -4, 9, -4, -1, 0, 1, -5, 16, -18, 0, 1, 0, 1, -6, 25, -48, 27, 8, -1, 0, 1, -7, 36, -100, 128, -27, -24, 1, 0, 1, -8, 49, -180, 375, -320, -27, 48, 0, 0, 1, -9, 64, -294, 864, -1375, 704, 243, -64, -1, 0, 1, -10, 81, -448, 1715, -4104, 4875, -1280, -810, 48, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 16 2017

Keywords

Examples

			G.f. of column k: A(x) = 1 - k*x + k^2*x^2 - (k - 1)*k^2*x^3 + (k - 2)*k^3*x^4 - k^3*(k^2 - 3*k + 1)*x^5 + ...
Square array begins:
  1,  1,  1,   1,    1,     1,  ...
  0, -1, -2,  -3,   -4,    -5,  ...
  0,  1,  4,   9,   16,    25,  ...
  0,  0, -4, -18,  -48,  -100,  ...
  0, -1,  0,  27,  128,   375,  ...
  0,  1,  8, -27, -320, -1375,  ...
		

Crossrefs

Columns k=0..1 give: A000007, A007325.
Rows n=0..3 give: A000012, A001489, A000290, A045991 (gives absolute value).
Main diagonal gives A291335.
Cf. A286509.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} k^j*x^(j*(j+1))/Product_{i=1..j} (1 - x^i)) / (Sum_{j>=0} k^j*x^(j^2)/Product_{i=1..j} (1 - x^i)).

A322550 Table read by ascending antidiagonals: T(n, k) is the minimum number of cubes necessary to fill a right square prism with base area n^2 and height k.

Original entry on oeis.org

1, 4, 2, 9, 1, 3, 16, 18, 12, 4, 25, 4, 1, 2, 5, 36, 50, 48, 36, 20, 6, 49, 9, 75, 1, 45, 3, 7, 64, 98, 4, 100, 80, 2, 28, 8, 81, 16, 147, 18, 1, 12, 63, 4, 9, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 121, 25, 9, 4, 245, 1, 175, 2, 3, 5, 11, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44, 12
Offset: 1

Views

Author

Stefano Spezia, Dec 15 2018

Keywords

Examples

			The table T starts in row n = 1 with columns k >= 1 as:
   1     2     3     4     5     6     7     8     9 ...
   4     1    12     2    20     3    28     4    36 ...
   9    18     1    36    45     2    63    72     3 ...
  16     4    48     1    80    12   112     2   144 ...
  25    50    75   100     1   150   175   200   225 ...
  36     9     4    18   180     1   252    36    12 ...
  49    98   147   196   245   294     1   392   441 ...
  64    16   192     4   320    48   448     1   576 ...
  81   162     9   324   405    18   567   648     1 ...
...
The triangle X(n, k) begins
  n\k|   1     2     3     4     5     6     7     8     9
  ---+----------------------------------------------------
   1 |   1
   2 |   4     2
   3 |   9     1     3
   4 |  16    18    12     4
   5 |  25     4     1     2     5
   6 |  36    50    48    36    20     6
   7 |  49     9    75     1    45     3     7
   8 |  64    98     4   100    80     2    28     8
   9 |  81    16   147    18     1    12    63     4     9
...
		

Crossrefs

Cf. A000012 (main diagonal of the table), A000027 (1st row of the table or diagonal of the triangle), A000290 (k=1), A000578, A011379 (superdiagonal of the table), A045991 (subdiagonal of the table), A050873, A119619, A320043 (row sums of the triangle).

Programs

  • GAP
    Flat(List([1..12], n->List([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3)));
    
  • Magma
    [[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]: n in [1..12]]; // triangle output
    
  • Maple
    a := (n, k) -> (n+1-k)^2*k/gcd(n+1-k, k)^3: seq(seq(a(n, k), k = 1 .. n), n = 1 .. 12)
  • Mathematica
    T[n_,k_]:=n^2*k/GCD[n,k]^3; Flatten[Table[T[n-k+1,k], {n, 12}, {k, n}]]
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i+1-j)^2*j/gcd(i+1-j,j)^3, j, 1, i), " ")); display_triangle(12);
    
  • PARI
    T(n, k) = (n+1-k)^2*k/gcd(n+1-k,k)^3;
    tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print);
    tabl(12) \\ triangle output

Formula

T(n, k) = n^2*k/gcd(n, k)^3.
T(n, k) = A000290(n)*k/A000578(A050873(n,k)).
X(n, k) = T(n + 1 - k, k).
X(2*n - 1, n) = A000012(n).
Product_{k=1..n} X(n, k)^(1/3) = A119619(n+1). - Stefano Spezia, Jun 24 2024

A342239 Table read by upward antidiagonals: T(n,k) is the number of strings of length k over an n-letter alphabet that are bifix free; n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 4, 0, 5, 12, 18, 6, 0, 6, 20, 48, 48, 12, 0, 7, 30, 100, 180, 144, 20, 0, 8, 42, 180, 480, 720, 414, 40, 0, 9, 56, 294, 1050, 2400, 2832, 1242, 74, 0, 10, 72, 448, 2016, 6300, 11900, 11328, 3678, 148, 0, 11, 90, 648, 3528, 14112, 37620, 59500, 45132, 11034, 284, 0
Offset: 1

Views

Author

Peter Kagey, Mar 06 2021

Keywords

Examples

			Table begins:
n\k | 1  2   3    4     5      6       7        8         9
----+------------------------------------------------------
  1 | 1  0   0    0     0      0       0        0         0
  2 | 2  2   4    6    12     20      40       74       148
  3 | 3  6  18   48   144    414    1242     3678     11034
  4 | 4 12  48  180   720   2832   11328    45132    180528
  5 | 5 20 100  480  2400  11900   59500   297020   1485100
  6 | 6 30 180 1050  6300  37620  225720  1353270   8119620
  7 | 7 42 294 2016 14112  98490  689430  4823994  33767958
  8 | 8 56 448 3528 28224 225344 1802752 14418488 115347904
		

Crossrefs

Rows: A003000 (n=2), A019308 (n=3), A019309 (n=4).
Columns: A002378 (k=1), A045991 (k=2), A047927 (k=3).

Formula

T(n,0) = n.
T(n,2k) = n*T(n,2k-1) - T(n,k).
T(n,2k+1) = n*T(n,2k).

A351381 Table read by downward antidiagonals: T(n,k) = n*(k+1)^2.

Original entry on oeis.org

4, 9, 8, 16, 18, 12, 25, 32, 27, 16, 36, 50, 48, 36, 20, 49, 72, 75, 64, 45, 24, 64, 98, 108, 100, 80, 54, 28, 81, 128, 147, 144, 125, 96, 63, 32, 100, 162, 192, 196, 180, 150, 112, 72, 36, 121, 200, 243, 256, 245, 216, 175, 128, 81, 40, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44
Offset: 1

Views

Author

Bernard Schott, Mar 28 2022

Keywords

Comments

When m and k are both positive integers and k | m, with m/k = n, then T(n,k) = S(m,k) = (m+k) + (m-k) + (m*k) + (m/k) = S(n*k,k) = n*(k+1)^2, problem proposed by Yakov Perelman.
All terms are nonsquarefree (A013929).

Examples

			Table begins:
  n \ k |   1      2      3      4      5      6      7      8      9     10
  ----------------------------------------------------------------------------
     1  |   4      9     16      25    36     49     64     81    100    121
     2  |   8     18     32      50    72     98    128    162    200    242
     3  |  12     27     48      75   108    147    192    243    300    363
     4  |  16     36     64     100   144    196    256    324    400    484
     5  |  20     45     80     125   180    245    320    405    500    605
     6  |  24     54     96     150   216    294    384    486    600    726
     7  |  28     63    112     175   252    343    448    567    700    847
     8  |  32     72    128     200   288    392    512    648    800    968
     9  |  36     81    144     225   324    441    576    729    900   1089
    10  |  40     90    160     250   360    490    640    810   1000   1210
  ............................................................................
T(3,4) = 75 = 3*(4+1)^2 corresponds to S(3*4,4) = S(12,4) = (12+4) + (12-4) + (12*4) + 12/4 = 75.
S(10,5) = (10+5) + (10-5) + (10*5) + (10/5) = T(10/5,5) = T(2,5) = 72.
		

References

  • I. Perelman, L'Algèbre Récréative, Chapitre IV, Les équations de Diophante, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
  • Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.

Crossrefs

Cf. A013929.
Cf. A000290 \ {0,1} (row 1), A001105 \ {0,2} (row 2), A033428 \ {0,3} (row 3), A016742 \ {0,4} (row 4), A033429 \ {0,5} (row 5), A033581 \ {0,6} (row 6).
Cf. A008586 \ {0} (column 1), A008591 \ {0} (column 2), A008598 \ {0} (column 3), A008607 \ {0} (column 4), A044102 \ {0} (column 5).
Cf. A045991 \ {0} (diagonal).

Programs

  • Mathematica
    T[n_, k_] := n*(k + 1)^2; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Mar 29 2022 *)

Formula

T(n,k) = n*(k+1)^2.
T(n,n) = (n+1)^3 - (n+1)^2 = A045991(n+1) for n >= 1.
G.f.: x*(1 + y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Mar 31 2022

A353435 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 0, 1, 1, 4, 4, 4, 0, 1, 1, 2, 16, 0, 4, 0, 1, 1, 6, 4, 48, 0, 0, 0, 1, 1, 4, 36, 0, 144, 0, 0, 0, 1, 1, 6, 16, 180, 0, 320, 0, 0, 0, 1, 1, 4, 36, 0, 900, 0, 720, 0, 0, 0, 1, 1, 10, 16, 108, 0, 3744, 0, 1312, 0, 0, 0, 1
Offset: 0

Views

Author

Pontus von Brömssen, Apr 21 2022

Keywords

Comments

T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.

Examples

			Array begins:
  n\m| 1  2  3  4    5  6        7  8   9 10
  ---+--------------------------------------
   0 | 1  1  1  1    1  1        1  1   1  1
   1 | 1  1  2  2    4  2        6  4   6  4
   2 | 1  1  4  4   16  4       36 16  36 16
   3 | 1  0  4  0   48  0      180  0 108  0
   4 | 1  0  4  0  144  0      900  0 324  0
   5 | 1  0  0  0  320  0     3744  0   0  0
   6 | 1  0  0  0  720  0    15552  0   0  0
   7 | 1  0  0  0 1312  0    54216  0   0  0
   8 | 1  0  0  0 2400  0   189468  0   0  0
   9 | 1  0  0  0 3232  0   550728  0   0  0
  10 | 1  0  0  0 4560  0  1604088  0   0  0
  11 | 1  0  0  0 4656  0  3895560  0   0  0
  12 | 1  0  0  0 4928  0  9467856  0   0  0
  13 | 1  0  0  0 4368  0 19185516  0   0  0
		

Crossrefs

Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2).
Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6).

Formula

For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.

A360205 Triangle read by rows. T(n, k) = (-1)^(n-k)*(k+1)*binomial(n, k)*pochhammer(1-n, n-k).

Original entry on oeis.org

1, 0, 2, 0, 4, 3, 0, 12, 18, 4, 0, 48, 108, 48, 5, 0, 240, 720, 480, 100, 6, 0, 1440, 5400, 4800, 1500, 180, 7, 0, 10080, 45360, 50400, 21000, 3780, 294, 8, 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9, 0, 725760, 4354560, 6773760, 4233600, 1270080, 197568, 16128, 648, 10
Offset: 0

Views

Author

Peter Luschny, Feb 08 2023

Keywords

Comments

A refinement of the number of partial permutations of an n-set (A002720).
Also the coefficients of a shifted derivative of the unsigned Lah polynomials (A271703).

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,     2;
[2] 0,     4,      3;
[3] 0,    12,     18,      4;
[4] 0,    48,    108,     48,      5;
[5] 0,   240,    720,    480,    100,     6;
[6] 0,  1440,   5400,   4800,   1500,   180,    7;
[7] 0, 10080,  45360,  50400,  21000,  3780,  294,   8;
[8] 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9;
		

Crossrefs

Cf. A052849 (column 1), A045991 (subdiagonal), A002720 (row sums), A271703.
Cf. A069138 (Stirling2 counterpart), A360174 (Stirling1 counterpart).

Programs

  • Maple
    T := (n, k) -> (-1)^(n - k)*(k + 1)*binomial(n, k)*pochhammer(1 - n, n - k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);

A054026 a(n) is the number of sets of natural numbers [a,b,c,d,e] that can be produced with the numbers [0..n] such that the values of all the distinct parenthesized expressions of a-b-c-d-e are different.

Original entry on oeis.org

0, 0, 0, 0, 300, 1296, 4116, 9984, 21384, 40800, 72600, 120960, 192660, 294000, 434700, 623616, 873936, 1197504, 1611504, 2131200, 2778300, 3571920, 4538820, 5702400, 7095000, 8744736, 10690056, 12964224, 15612324, 18673200, 22199100, 26234880, 30840480, 36067200, 41983200, 48646656, 56134476
Offset: 0

Views

Author

Asher Auel, Jan 27 2000

Keywords

Comments

There are 14 ways to put parentheses in the expression a - b - c - d - e: ((a - (b - c)) - d) - e, (((a - b) - c) - d) - e, ((a - b) - (c - d)) - e, etc. This sequence describes how many sets of natural numbers [a,b,c,d,e] can be produced with the numbers {0,1,2,3,...,n} such that the values of all the distinct expressions are different.
It can be shown that in the set of expressions obtained this way, for any number of variables, a is always positive, b is always negative, and the other variables appear with every possible combination of signs. Therefore, the valid k-tuples of numbers in [0..n] are precisely those such that every subset of {c,d,e,...}, including the empty subset, has a distinct sum. For 5 variables, there are n*(n-1)*(n-2) ways to choose distinct, nonzero values for c, d, and e. For each k, there are floor((n-1)/2) ways to choose distinct numbers x and y in [0..n] such that x + y = k. Summing over all k in [0..n], allowing arbitrary permutations of {x,y,k}, and allowing a and b to be any value gives the formula below. - Charlie Neder, Jan 13 2019

Examples

			For example, no such sets can be produced with only 0's, only 0's and 1's, only 0's and 1's and 2's, only 1's and 2's and 3's; with {0,1,2,3,4}, 300 such sets can be produced.
		

Crossrefs

Cf. A045991 (similar for a - b - c), A047929 (similar for a - b - c - d).

Programs

  • Mathematica
    LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1},{0,0,0,0,300,1296,4116,9984,21384},40] (* Harvey P. Dale, May 25 2025 *)
  • PARI
    a(n) = (1+n)^2*(3*(-1)^n+4*n^3-18*n^2+20*n-3)/4; \\ Jinyuan Wang, Jun 27 2020

Formula

a(n) = (n+1)^2 * (n*(n-1)*(n-2) - 6*A002620(n-1)). - Charlie Neder, Jan 13 2019

Extensions

a(9)-a(36) from Charlie Neder, Jan 13 2019
Incorrect formula removed by Jinyuan Wang, Jun 27 2020
Previous Showing 41-50 of 65 results. Next