cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A046007 Discriminants of imaginary quadratic fields with class number 10 (negated).

Original entry on oeis.org

119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028
Offset: 1

Views

Author

Keywords

Comments

87 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019

A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).

Original entry on oeis.org

231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732
Offset: 1

Views

Author

Keywords

Comments

206 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # G. C. Greubel, Mar 01 2019

A046011 Discriminants of imaginary quadratic fields with class number 14 (negated).

Original entry on oeis.org

215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988
Offset: 1

Views

Author

Keywords

Comments

There are 95 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 14, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 14} \\ Andrew Howroyd, Jul 24 2018

A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).

Original entry on oeis.org

399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
Offset: 1

Views

Author

Keywords

Comments

322 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018

A046015 Discriminants of imaginary quadratic fields with class number 18 (negated).

Original entry on oeis.org

335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-d)] is isomorphic to C_3 X C_6 for d = 9748, 12067, 16627, 17131, 19651, 22443, 23683, 34027, 34507. For all other known d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_18. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 18, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A107628 Number of integral quadratic forms ax^2 + bxy + cy^2 whose discriminant b^2-4ac is -n, 0 <= b <= a <= c and gcd(a,b,c) = 1.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 2, 4, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 5, 4, 0, 0, 2, 2, 0, 0, 3, 4, 0
Offset: 1

Views

Author

T. D. Noe, May 18 2005, Apr 30 2008

Keywords

Comments

This sequence is closely related to the class number function, h(-n), which is given for fundamental discriminants in A006641. For a fundamental discriminant d, we have h(-d) < 2a(d). It appears that a(n) < Sqrt(n) for all n. For k>1, the primes p for which a(p)=k coincide with the numbers n such that the class number h(-n) is 2k-1 (see A006203, A046002, A046004, A046006. A046008, A046010, A046012, A046014, A046016 A046018, A046020). - T. D. Noe, May 07 2008

Examples

			a(15)=2 because the forms x^2 + xy + 4y^2 and 2x^2 + xy + 2y^2 have discriminant -15.
		

References

Crossrefs

Cf. A106856 (start of many quadratic forms).
Cf. A133675 (n such that a(n)=1).
Cf. A223708 (without zeros).

Programs

  • Mathematica
    dLim=150; cnt=Table[0, {dLim}]; nn=Ceiling[dLim/4]; Do[d=b^2-4a*c; If[GCD[a, b, c]==1 && 0<-d<=dLim, cnt[[ -d]]++ ], {b, 0, nn}, {a, b, nn}, {c, a, nn}]; cnt
  • PARI
    {a(n)=local(m); if(n<3, 0, forvec(v=vector(3,k,[0,(n+1)\4]), if( (gcd(v)==1)&(-v[1]^2+4*v[2]*v[3]==n), m++ ), 1); m)} /* Michael Somos, May 31 2005 */

A123563 Discriminants of imaginary quadratic fields with class number 20 (negated).

Original entry on oeis.org

455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552
Offset: 1

Views

Author

Eric W. Weisstein, Nov 19 2006

Keywords

Comments

A finite sequence with exactly 350 terms.

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 20, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A171724 Discriminants of imaginary quadratic fields with class number 22 (negated).

Original entry on oeis.org

591, 623, 767, 871, 879, 1076, 1111, 1167, 1304, 1556, 1591, 1639, 1903, 2215, 2216, 2263, 2435, 2623, 2648, 2815, 2863, 2935, 3032, 3151, 3316, 3563, 3587, 3827, 4084, 4115, 4163, 4328, 4456, 4504, 4667, 4811, 5383, 5416, 5603, 5716
Offset: 1

Views

Author

N. J. A. Sloane, Oct 03 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 22, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A351666 Discriminants of imaginary quadratic fields with class number 28 (negated).

Original entry on oeis.org

831, 935, 1095, 1311, 1335, 1364, 1455, 1479, 1496, 1623, 1703, 1711, 1855, 1976, 2024, 2055, 2120, 2127, 2324, 2359, 2431, 2455, 2564, 2607, 2616, 2703, 3224, 3272, 3396, 3419, 3487, 3535, 3572, 3576, 3608, 3624, 3731, 3848, 3995, 4040, 4183, 4279, 4344
Offset: 1

Views

Author

Andy Huchala, Feb 16 2022

Keywords

Comments

Sequence contains 457 terms; largest is 126043.
The class groups associated to 174 of the above discriminants are isomorphic to C_28, and the remaining 283 have a class group isomorphic to C_14 X C_2.

Crossrefs

Programs

  • PARI
    isok(n) = {isfundamental(-n) && quadclassunit(-n).no == 28}; \\ Michel Marcus, Mar 02 2022
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 28]
    

A351679 Discriminants of imaginary quadratic fields with class number 41 (negated).

Original entry on oeis.org

1151, 2551, 2719, 3079, 3319, 3511, 6143, 9319, 9467, 10499, 10903, 11047, 11483, 11719, 11987, 12227, 12611, 13567, 14051, 14411, 14887, 14983, 16067, 16187, 19763, 20407, 20771, 21487, 22651, 24971, 25171, 26891, 26987, 27739, 28547, 29059, 29251, 30859
Offset: 1

Views

Author

Andy Huchala, Mar 28 2022

Keywords

Comments

Sequence contains 109 terms; largest is 296587.
The class group of Q[sqrt(-d)] is isomorphic to C_41 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 41]
Previous Showing 21-30 of 43 results. Next