cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 100 results. Next

A120778 Numerators of partial sums of Catalan numbers scaled by powers of 1/4.

Original entry on oeis.org

1, 5, 11, 93, 193, 793, 1619, 26333, 53381, 215955, 436109, 3518265, 7088533, 28539857, 57414019, 1846943453, 3711565741, 14911085359, 29941580393, 240416274739, 482473579583, 1936010885087, 3883457090629, 62306843256889
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

For denominators see A120777.
From the expansion of 0 = sqrt(1-1) = 1 - (1/2)*Sum_{k>=0} C(k)/4^k one has r:=lim_{n->infinity} r(n) = 2, with the partial sums r(n) defined below.
The series a(n)/A046161(n+1) is absolutely convergent to 1. - Ralf Steiner, Feb 16 2017
If n >= 1 it appears a(n-1) is equal to the difference between the denominator and the numerator of the ratio (2n)!!/(2n-1)!!. In particular a(n-1) is the difference between the denominator and the numerator of the ratio A001147(2n-1)/A000165(2n). See examples. - Anthony Hernandez, Feb 05 2020
From Peter Bala, Feb 16 2022: (Start)
Sum_{k = 0..n-1} Catalan(k)/4^k = (1/4^n)*(2*n)*binomial(2*n,n) *( 1 - 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) - 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - ... ). Cf. A082687 and A101028.
This identity allows us to extend the definition of Sum_{k = 0..n} Catalan(k)/4^k to non-integral values of n. (End)

Examples

			Rationals r(n): [1, 5/4, 11/8, 93/64, 193/128, 793/512, 1619/1024, 26333/16384, ...].
From _Anthony Hernandez_, Feb 05 2020: (Start)
For n = 4. The 4th even number is 8, and 8!!/(8-1)!! = 128/35, so a(4-1) = a(3) = 128 - 35 = 93.
For n = 7. The 7th even number is 14, and 14!!/(14-1)!! = 2048/429, so a(7-1) = a(6) = 2048 - 429 = 1619. (End)
		

Crossrefs

Factors of A160481. Cf. A120777 (denominators), A082687, A101028, A141244.

Programs

  • Magma
    [Numerator(2*(1-Binomial(2*n+2,n+1)/4^(n+1))): n in [0..25]]; // Vincenzo Librandi, Feb 17 2017
  • Maple
    a := n -> 2^(2*(n+1) - add(i, i=convert(n+1, base, 2)))* (1-((n+1/2)!)/(sqrt(Pi)*(n+1)!)): seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 21 2017
  • Mathematica
    f[n_] := f[n] = Numerator[(4/Pi) (n + 1) Integrate[x^n*ArcSin[Sqrt[x]], {x, 0, 1}]]; Array[f, 23, 0] (* Robert G. Wilson v, Jan 03 2011 *)
    a[n_] := 2^(2(n+1) - DigitCount[n+1,2,1])(1 - ((n+1/2)!)/(Sqrt[Pi](n+1)!));
    Table[a[n], {n, 0, 23}] (* Peter Luschny, Dec 21 2017 *)

Formula

a(n) = numerator(r(n)), with the rationals r(n):=Sum_{k = 0..n} C(k)/4^k with C(k) := A000108(k) (Catalan numbers). Rationals r(n) are taken in lowest terms.
r(n) = (4/Pi)*(n+1)*Integral_{x = 0..1} x^n*arcsin(sqrt(x)) dx. - Groux Roland, Jan 03 2011
r(n) = 2*(1 - binomial(2*n+2,n+1)/4^(n+1)). - Groux Roland, Jan 04 2011
a(n) = A141244(2n+2) = A141244(2n+3) (conjectural). - Greg Martin, Aug 16 2014, corrected by M. F. Hasler, Aug 18 2014
From Peter Luschny, Dec 21 2017: (Start)
a(n) = numerator(1 - ((n+1/2)!)/(sqrt(Pi)*(n+1)!)).
a(n) = 2^(2*(n+1) - HammingWeight(n+1))*(1 - ((n+1/2)!)/(sqrt(Pi)*(n+1)!)). (End)

A161199 Numerators in expansion of (1-x)^(-5/2).

Original entry on oeis.org

1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf. A046161 (denominators for (1-x)^(-5/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), this sequence (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
    [A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
  • SageMath
    def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
    [A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - Groux Roland, Feb 23 2011

A161202 Numerators in expansion of (1-x)^(5/2).

Original entry on oeis.org

1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): this sequence (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
    [A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
    [A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator( (15/(15-46*n+36*n^2-8*n^3))*binomial(2*n,n)/(4^n) ).
a(n) = (-1)^n*numerator( binomial(5/2, n) ). - G. C. Greubel, Sep 24 2024

A162443 Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.

Original entry on oeis.org

5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The BG1 matrix coefficients are defined by BG1[2m-1,1] = 2*beta(2m) and the recurrence relation BG1[2m-1,n] = BG1[2m-1,n-1] - BG1[2m-3,n-1]/(2*n-3)^2 with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). For the BG2 matrix, the even counterpart of the BG1 matrix, see A008956.
We discovered that the n-th term of the row coefficients can be generated with BG1[1-2*m,n] = RBS1(1-2*m,n)* 4^(n-1)*((n-1)!)^2/ (2*n-2)! for m >= 1. For the BS1(1-2*m,n) polynomials see A160485.
The coefficients in the columns of the BG1 matrix, for m >= 1 and n >= 2, can be generated with GFB(z;n) = ((-1)^(n+1)*CFN2(z;n)*GFB(z;n=1) + BETA(z;n))/((2*n-3)!!)^2 for n >= 2. For the CFN2(z;n) and the Beta polynomials see A160480.
The BG1[ -5,n] sequence can be generated with the first Maple program and the BG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The BG1 matrix is related to the BS1 matrix, see A160480 and the formulas below.

Examples

			The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
		

Crossrefs

A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BG1[ -3, n] equal (-1)*A002595(n-1)/A055786(n-1) for n >= 1.
The BG1[ -1, n] equal A046161(n-1)/A001790(n-1) for n >= 1.
The cs(n) equal A046161(n-2)/A001803(n-2) for n >= 2.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to A008956.
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
    # End program 1
    nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(BG1[ -5,n]) and A162444(n) = denom(BG1[ -5,n]) with BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!.
The generating functions GFB(z;n) of the coefficients in the matrix columns are defined by
GFB(z;n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFB(z;n) = (1-z^2/(2*n-3)^2)*GFB(n-1) - 4^(n-2)*(n-2)!^2/((2*n-4)!*(2*n-3)^2) for n => 2 with GFB(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
The column sums cs(n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity) = 4^(n-1)/((2*n-2)*binomial(2*n-2,n-1)) for n >= 2.
BG1[2*m-1,n] = (n-1)!^2*4^(n-1)*BS1[2*m-1,n]/(2*n-2)!

A161201 Numerators in expansion of (1-x)^(-7/2).

Original entry on oeis.org

1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), this sequence (p=-7).

Programs

  • Magma
    A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
    [A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
    Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
    [A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((15+46*n+36*n^2+8*n^3)/15)*binomial(2*n,n)/(4^n)).
a(n) = (-1)^n*numerator( binomial(-7/2, n) ). - G. C. Greubel, Sep 24 2024

A162440 The pg(n) sequence that is associated with the Eta triangle A160464.

Original entry on oeis.org

2, 16, 144, 4608, 115200, 4147200, 203212800, 26011238400, 2106910310400, 210691031040000, 25493614755840000, 3671080524840960000, 620412608698122240000, 121600871304831959040000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The EG1 matrix coefficients are defined by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 with m = .., -2, -1, 0, 1, 2, ... and n = 1, 2, 3, ... . As usual, eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2 matrix, the even counterpart of the EG1 matrix, see A008955.
The coefficients in the columns of the EG1 matrix, for m >= 1 and n >= 2, can be generated with GFE(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GFE(z;n=1) + ETA(z,n))/pg(n) for n >= 2.
The CFN1(z,n) polynomials depend on the central factorial numbers A008955 and the ETA(z,n) are the Eta polynomials which led to the Eta triangle, see for both A160464.
The pg(n) sequence can be generated with the first Maple program and the EG1[2m-1,n] matrix coefficients can be generated with the second Maple program.
The EG1 matrix is related to the ES1 matrix, see A160464 and the formulas below.

Examples

			The first few generating functions GFE(z;n) are:
GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2,
GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16,
GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle A160464.
The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to A008955.
The EG1[ -1, n] equal (1/2)*A001803(n-1)/A046161(n-1).
The r(n) sequence equals A062383(n) (n>=1).
The e(n) sequence equals A029837(n) (n>=1).
Cf. A160473 (p(n) sequence).
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax);
    # End program 1
    nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od;
    # End program 2 (Edited by Johannes W. Meijer, Sep 21 2012)

Formula

pg(n) = (n-1)!^2*2^floor(log(n-1)/log(2)+1) for n >= 2.
r(n) = 2^e(n) = 2^floor(log(n-1)/log(2)+1) for n >= 2.
EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2) for n >= 1.
GFE(z;n) = sum (EG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFE(z;n) = (1-z^2/(n-1)^2)*GFE(z;n-1)-EG1[ -1,n-1]/(n-1)^2 for n = >2. with GFE(z;n=1) = 2*log(2)-Psi(z)-Psi(-z)+Psi(z/2)+Psi(-z/2) and Psi(z) is the digamma function.
EG1[2m-1,n] = (2*2^(1-2*n)*(2*n-1)!/((n-1)!^2)) * ES1[2m-1,n].

A067624 a(n) = 2^(2*n)*(2*n)!.

Original entry on oeis.org

1, 8, 384, 46080, 10321920, 3715891200, 1961990553600, 1428329123020800, 1371195958099968000, 1678343852714360832000, 2551082656125828464640000, 4714400748520531002654720000, 10409396852733332453861621760000
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2002

Keywords

Comments

For n >= 1, a(n) equals the absolute value of the determinant of the 4n X 4n matrix with i's along the superdiagonal (where i is the imaginary unit), and 2, 3, 4, ... 4*n along the subdiagonal, and 0's everywhere else. (See Mathematica code below.) - John M. Campbell, Jun 04 2011

Crossrefs

Cf. A000165.
Appears in A162445, A061549 and A120738. - Johannes W. Meijer, Jul 06 2009

Programs

  • Magma
    [2^(2*n)*Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Feb 18 2018
  • Maple
    for n from 0 to 30 by 2 do printf(`%d,`,2^(n)*(n)!) od: # James Sellers, Feb 11 2002
    A067624 := n -> 2^(2*n)*(2*n)!: seq(A067624(n), n=0..12); # Johannes W. Meijer, Jan 05 2017
  • Mathematica
    Table[Abs[Det[Array[KroneckerDelta[#1 + 1, #2]*I &, {4*n, 4*n}] + Array[KroneckerDelta[#1 - 1, #2]*#1 &, {4*n, 4*n}]]], {n, 1, 20}] (* John M. Campbell, Jun 04 2011 *)
    Table[2^(2 n) (2 n)!, {n, 0, 30}] (* Vincenzo Librandi, Feb 18 2018 *)

Formula

a(n) = A000165(2*n) where A000165(k) are the double factorial numbers 2^k*k!=(2k)!!. - Corrected by Johannes W. Meijer, Jul 05 2009
a(n) = (4*n)!! = 2^(2*n)*(2*n)!. - Johannes W. Meijer, Jul 06 2009
sqrt((1+cos(x))/2) = Sum_{n>=0} (-1)^n * x^(2*n) / a(n).
a(n) = (A280442(n)/A046161(n))/(A223067(n)/A223068(n)). - Johannes W. Meijer, Jan 05 2017
From Amiram Eldar, Jul 12 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(1/2).
Sum_{n>=0} (-1)^n/a(n) = cos(1/2). (End)

Extensions

More terms from James Sellers, Feb 11 2002

A327495 a(n) = numerator( Sum_{j=0..n} (j!/(2^j*floor(j/2)!)^2)^2 ).

Original entry on oeis.org

1, 17, 69, 1113, 17817, 285297, 1141213, 18260633, 1168681737, 18699007017, 74796032037, 1196736992841, 19147791938817, 306364680039081, 1225458720340365, 19607339566855065, 5019478929156305865, 80311662878468159865, 321246651514020383485, 5139946424277661728785
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Comments

This sequence is a variant of the Landau constants when the normalized central binomial is replaced by the normalized swinging factorial.
(1) A277233(n)/4^A005187(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2 with the normalized central binomial
g(n) = (2*n)! / (2^n*n!)^2 = A001790(n)/A046161(n).
(2) A327495(n)/4^A327492(n) are the rationals considered here. These numbers are defined as H(n) = Sum_{j=0..n} h(j)^2 with the normalized swinging factorial
h(n) = n! / (2^n*floor(n/2)!)^2 = A163590(n)/A327493(n).
(3) In particular, this means that we have the pure integer representations
A277233(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2;
A327495(n) = Sum_{k=0..n}(A163590(k)*(2^(A327492(n) - A327492(k))))^2.
(4) A163590 is the odd part of the swinging factorial and A001790 is the odd part of the swinging factorial at even indices (see a comment from Aug 01 2009 in A001790). Similarly, A327493(2n)=A046161(2n) and A327493(2n+1) = 2*A046161(2n+1).
(5) A005187 are the partial sums of A001511, the 2-adic valuation of 2n, and A327492 are the partial sums of A327491.

Examples

			r(n) = 1, 17/16, 69/64, 1113/1024, 17817/16384, 285297/262144, 1141213/1048576, 18260633/16777216, ...
		

Crossrefs

Programs

  • Maple
    A327495 := n -> numer(add(j!^2/(2^j*iquo(j,2)!)^4, j=0..n)):
    seq(A327495(n), n=0..19);
  • PARI
    a(n)={ numerator(sum(j=0, n, (j!/(2^j*(j\2)!)^2)^2 )) } \\ Andrew Howroyd, Sep 28 2019

Formula

Denominator(r(n)) = 4^A327492(n) = A327493(n)^2 = A327496(n).
a(n) = Sum_{k=0..n} (A163590(k)*(2^(A327492(n) - A327492(k))))^2.

A173384 a(n) = 2^(2*n - HammingWeight(n)) * [x^n] ((x-1)^(-1) + (1-x)^(-3/2)).

Original entry on oeis.org

0, 1, 7, 19, 187, 437, 1979, 4387, 76627, 165409, 707825, 1503829, 12706671, 26713417, 111868243, 233431331, 7770342787, 16124087129, 66765132341, 137948422657, 1138049013461, 2343380261227, 9636533415373, 19787656251221
Offset: 0

Views

Author

Paul Curtz, Feb 17 2010

Keywords

Comments

If n >= 1 it appears a(n-1) is equal to the difference between the denominator and the numerator of the ratio (2n-1)!!/(2n-2)!!. In particular a(n-1) is the difference between the denominator and the numerator of the ratio A001147(2n-2)/A000165(2n-1). See examples. - Anthony Hernandez, Feb 05 2020
It can be seen that this is true, e.g., using A001803(n) = (2n+1)!/(n!^2*2^A000120(n)) and A046161(n) = 4^n/2^A000120(n). - M. F. Hasler, Feb 07 2020
Numerators in the expansion of (1-(1-x)^(1/2))/(1-x)^(3/2). Denominators are A046161. Compare to A001790. - Thomas Curtright, Feb 09 2024

Examples

			From _Anthony Hernandez_, Feb 05 2020: (Start)
Consider n = 4. The 4th odd number is 7, and 7!!/(7-1)!! = 35/16, and a(4-1) = a(3) = 35 - 16 = 19.
Consider n = 7. The 7th odd number is 13, and 13!!/(13-1)!! = 3003/1024, and a(7-1) = a(6) = 3003 - 1024 = 1979. (End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (NumeratorRat((2*n+1)*Binomial(2*n, n)/(4^n)) - DenominatorRat(Binomial(2*n, n)/(4^n)))); # G. C. Greubel, Dec 09 2018
  • Magma
    [Numerator((2*n+1)*Binomial(2*n, n)/(4^n)) - Denominator(Binomial(2*n, n)/(4^n)): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A046161 := proc(n) binomial(2*n,n)/4^n ; denom(%) ; end proc:
    A173384 := proc(n) A001803(n)-A046161(n) ; end proc: # R. J. Mathar, Jul 06 2011
  • Mathematica
    Table[Numerator[(2*n+1)*Binomial[2*n, n]/(4^n)] - Denominator[Binomial[2*n, n]/(4^n)], {n,0,30}] (* G. C. Greubel, Dec 09 2018 *)
    A173384[n_] := 2^(2*n - DigitCount[n, 2, 1]) Coefficient[Series[(x - 1)^(-1) + (1 - x)^(-3/2), {x, 0, n}], x, n]
    Table[A173384[n], {n, 0, 23}]  (* Peter Luschny, Feb 17 2024 *)
  • PARI
    for(n=0,30, print1(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, Dec 09 2018
    
  • Sage
    [(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/(4^n))) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A001803(n) - A046161(n). (Previous name.)
Let r(n) = (-2)^n*Sum_{j=0..n-1} binomial(n,j)*Bernoulli(j+n+1, 1/2)/(j+n+1) then a(n) = numerator(r(n)). - Peter Luschny, Jun 20 2017

Extensions

New name using an expansion of Thomas Curtright by Peter Luschny, Feb 17 2024

A173624 Decimal expansion of Pi^2*log(2)/8 - 7*zeta(3)/16, where zeta is the Riemann zeta function.

Original entry on oeis.org

3, 2, 9, 2, 3, 6, 1, 6, 2, 8, 4, 9, 8, 1, 7, 0, 6, 8, 2, 4, 3, 5, 4, 9, 4, 4, 8, 5, 8, 3, 0, 0, 2, 6, 3, 7, 9, 5, 2, 7, 9, 0, 8, 7, 8, 1, 2, 4, 5, 2, 0, 9, 2, 8, 6, 3, 1, 3, 9, 7, 6, 7, 5, 6, 0, 2, 5, 8, 5, 4, 3, 9, 8, 3, 3, 8, 3, 4, 1, 1, 3, 8, 8, 1, 6, 6, 9, 3, 1, 8, 5, 3, 1, 5, 6, 4, 9, 9, 7, 2, 7, 8, 2, 2, 0
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Examples

			0.3292361628498170682435494485830026...
		

Crossrefs

Programs

  • Maple
    -7*Zeta(3)/16+Pi^2*log(2)/8 ; evalf(%) ;
  • Mathematica
    N[(1/8) (Pi^2 Log[2] - 7 Zeta[3]/2), 100] (* John Molokach, Aug 02 2013 *)

Formula

The absolute value of the Integral_{x=0..Pi/2} x*log(sin(x)) dx.
Equals A111003 * A002162 - 7*A002117/16. [typo corrected by R. J. Mathar, Nov 15 2010]
Equals Sum_{n>=1} (phi(-1,1,2n)/(2n-1)^2), where phi is the Lerch transcendent. - John Molokach, Jul 22 2013
Equals Sum_{n>=1} 4^n / (8*n^3*binomial(2*n,n)). - John Molokach, Aug 01 2013
Equals Integral_{y=0..1} Integral_{x=0..1} log(x*y+1)/(1-(x*y)^2) dx dy. - Amiram Eldar, Apr 17 2022
Previous Showing 31-40 of 100 results. Next