A244420
Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).
Original entry on oeis.org
1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0
The numerator triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 3 1
2: 5 5 1
3: 35 21 7 1
4: 63 21 9 9 1
5: 231 165 165 55 11 1
6: 429 1287 715 143 39 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 12155 2431 1547 1547 595 85 17 17 1
9: 46189 37791 12597 6783 2907 969 969 171 19 1
...
The rational triangle R(n,m) begins:
n\m 0 1 2 3 4 5
0: 1
1: 3/4 1/4
2: 5/8 5/16 1/16
3: 35/64 21/64 7/64 1/64
4: 63/128 21/64 9/64 9/256 1/256
5: 231/512 165/512 165/1024 55/1024 11/1024 1/1024
...
The next rows are:
n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096,
n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384,
n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536,
n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144,
...
Expansions:
x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2).
x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64.
For the Todd polynomials see the coefficient table A084930.
A276738
Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.
Original entry on oeis.org
-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1
n/m 1 2 3 4 5 6 7
--------------------------------------------
1 | -1
2 | -1 5
3 | -1 12 -32
4 | -1 14 7 -126 231
5 | -1 16 16 -160 -160 1280 -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q] = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
Coefficient[term, #] & /@ basis[n]]
With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]
A276816
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.
Original entry on oeis.org
-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1
n/m 1 2 3 4 5
------------------------------------------
1 | -24 480
2 | -120 6720 3360 -241920 1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :> Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
tri7 = tri[7]; tri7 // TableForm
PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
{#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]
A276817
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.
Original entry on oeis.org
-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0
n/m 1 2 3 4 5 6 7
------------------------------------------
0 | -1
1 | 2 6
2 | -3 -16 8 -48
3 | 4 30 -20 140 10 -140 420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
- R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
- J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.
- Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
- Bradley Klee, Estimating Planetary Perihelion Precession, Wolfram Demonstrations Project, 2106.
- Bradley Klee, Exact and Approximate Relativistic Corrections to the Orbital Precession of Mercury, Wolfram Demonstrations Project, 2016.
- Bradley Klee, Pentagonal Orbits
- Seqfans, Another planetary sequence, Seqfans mailing list, September 2016.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
(*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
(*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
(*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}
A280442
Numerators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n*euler(2*n)*x^n/(2*n)).
Original entry on oeis.org
1, 1, 11, 173, 22931, 1319183, 233526463, 29412432709, 39959591850371, 8797116290975003, 4872532317019728133, 1657631603843299234219, 2718086236621937756966743, 1321397724505770800453750299, 1503342018433974345747514544039
Offset: 0
-
nmax:=14: f := series(exp(add((-1)^n*euler(2*n) * x^n/(2*n), n=1..nmax+1)), x=0, nmax+1): for n from 0 to nmax do a(n) := numer(coeff(f, x, n)) od: seq(a(n), n=0..nmax);
-
def A280442_list(prec):
P. = PowerSeriesRing(QQ, default_prec=2*prec)
def g(x): return exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1)))
R = P(g(x)).coefficients()
d = lambda n: 2^(2*n - sum(n.digits(2)))
return [d(n)*R[n] for n in (0..prec)]
print(A280442_list(14)) # Peter Luschny, Jan 05 2017
A036069
Denominator of rational part of Haar measure on Grassmannian space G(n,1).
Original entry on oeis.org
1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
Offset: 0
1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
- D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
-
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
-
Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)
A052468
Numerators in the Taylor series for arccosh(x) - log(2*x).
Original entry on oeis.org
1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 646323, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 2687300306925, 15801325804719, 61989816618513, 121683714103007
Offset: 1
i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ...
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A052468/A052469
See
A055786 for further information.
-
List([1..30], n-> NumeratorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
-
[Numerator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
-
a [n_]:=Numerator[(2 n - 1)! / (2^(2 n) n!^2)]; Array[a, 40] (* Vincenzo Librandi, Jul 10 2017 *)
-
{a(n) = numerator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
-
[numerator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
A052469
Denominators in the Taylor series for arccosh(x) - log(2*x).
Original entry on oeis.org
4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
Offset: 1
arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
- Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.
-
List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
-
[Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
-
a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
-
{a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
-
[denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
A067002
Numerator of Sum_{k=0..n} 2^(k-2*n) * binomial(2*n-2*k,n-k) * binomial(n+k,n).
Original entry on oeis.org
1, 3, 21, 77, 1155, 4389, 33649, 129789, 4023459, 15646785, 122044923, 477084699, 7474326951, 29322359577, 230389968105, 906200541213, 57090634096419, 225004263791769, 1775033636579511, 7006711723340175, 110706045228774765
Offset: 0
1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ... = A067002/A046161.
-
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
-
Numerator[Table[Sum[2^(k-2n) Binomial[2n-2k,n-k]Binomial[n+k,n],{k,0,n}],{n,0,30}]] (* Harvey P. Dale, Oct 19 2012 *)
A069955
Let W(n) = Product_{k=1..n} (1 - 1/4k^2), the partial Wallis product (lim_{n->oo} W(n) = 2/Pi); then a(n) = numerator(W(n)).
Original entry on oeis.org
1, 3, 45, 175, 11025, 43659, 693693, 2760615, 703956825, 2807136475, 44801898141, 178837328943, 11425718238025, 45635265151875, 729232910488125, 2913690606794775, 2980705490751054825, 11912508103174630875, 190453061649520333125, 761284675790187924375
Offset: 0
- Orin J. Farrell and Bertram Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.
-
a[n_] := Numerator[Product[1 - 1/(4*k^2), {k, 1, n}]]; Array[a, 20, 0] (* Amiram Eldar, May 07 2025 *)
-
a(n) = numerator(prod(k=1, n, 1-1/(4*k^2))); \\ Michel Marcus, Oct 22 2016
Comments