cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A064001 Odd abundant numbers not divisible by 5.

Original entry on oeis.org

81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071
Offset: 1

Views

Author

Harvey P. Dale, Sep 17 2001

Keywords

Comments

Or, odd abundant numbers that do not end in 5.
All terms below 2000000 are divisible by 21 (so by 3). Moreover, except for a few, most are divisible by 231. - Labos Elemer, Sep 15 2005 [The least term that is not divisible by 21 is a(908) = 28683369. - Amiram Eldar, Jan 27 2025]
An odd abundant number (see A005231) not divisible by 3 nor 5 must have at least 15 distinct prime factors (e.g., 61#/5#*7^2*11*13*17, where # is primorial) and be >= 67#/5#*77 = A047802(3) ~ 2.0*10^25. -- The smallest non-primitive abundant number (cf. A006038) in this sequence is 7*a(1) = 567567 = a(14). - M. F. Hasler, Jul 27 2016
There are 26 terms less than 10^6 and a surprising fact is that 18 of them are doublets (cf. A020338). - Omar E. Pol, Jan 17 2025
The numbers of terms that do not exceed 10^k, for k = 5, 6, ..., are 1, 26, 290, 3071, 31600, 320948, 3174762, 31693948, ... . Apparently, the asymptotic density of this sequence equals 0.000031... . Therefore, the least term not divisible by 3 that was mentioned above is a(~6*10^20) = 20169691981106018776756331. - Amiram Eldar, Jan 27 2025

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Rev. ed. 1997, p. 169.

Crossrefs

Intersection of A005231 and A047201.
Cf. A020338.

Programs

  • Mathematica
    Select[ Range[ 1, 10^6, 2 ], DivisorSigma[ 1, # ] - 2# > 0 && Mod[ #, 5 ] != 0 & ]
    ta={{0}};Do[g=n;s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&!Equal[Mod[n, 2], 0]&& !Equal[Mod[n, 5], 0], Print[n];ta=Append[ta, n]], {n, 1, 2000000}] ta=Delete[ta, 1] (* Labos Elemer, Sep 15 2005 *)
  • PARI
    { n=0; forstep (m=1, 10^9, 2, if (m%5 && sigma(m) > 2*m, write("b064001.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 05 2009

Extensions

More terms from Robert G. Wilson v, Sep 28 2001
Further terms from Labos Elemer, Sep 15 2005
Entry revised by N. J. A. Sloane, Mar 28 2006

A056906 Numbers k such that 36*k^2 + 5 is prime.

Original entry on oeis.org

0, 1, 2, 6, 8, 12, 13, 16, 19, 21, 27, 28, 33, 34, 41, 43, 49, 56, 57, 62, 69, 72, 76, 77, 82, 84, 86, 89, 92, 96, 98, 99, 104, 111, 119, 121, 126, 128, 131, 132, 133, 134, 139, 142, 146, 148, 153, 159, 166, 168, 169, 173, 174
Offset: 1

Views

Author

Henry Bottomley, Jul 07 2000

Keywords

Comments

Except for a(1), a(n) is never a multiple of 5.

Examples

			a(3)=2 since 36*2^2 + 5 = 149, which is prime.
		

Crossrefs

This sequence and formula generate all primes of the form k^2+5, i.e., A056905.
Except for the first term, this sequence is a subsequence of A047201.

Programs

Formula

a(n) = sqrt(A056905(n)-5)/6.

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A225496 Numbers having no balanced prime factors, cf. A006562.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84
Offset: 1

Views

Author

Reinhard Zumkeller, May 09 2013

Keywords

Comments

a(n) = A047201(n) for n <= 42.

Examples

			a(40) = 49 = 7^2 = A178943(3)^2;
a(41) = 51 = 3 * 17 = A178943(2) * A178943(6);
a(42) = 52 = 2^2 * 13 = A178943(1)^2 * A178943(5);
a(43) = 54 = 2 * 3^3 = A178943(1) * A178943(2)^3;
a(44) = 56 = 2^3 * 7 = A178943(1)^3 * A178943(3);
a(45) = 57 = 3 * 19 = A178943(2) * A178943(7).
		

Crossrefs

Cf. A225493 (strong), A225494 (balanced), A225495 (weak).

Programs

  • Haskell
    import Data.Set (singleton, fromList, union, deleteFindMin)
    a225496 n = a225496_list !! (n-1)
    a225496_list = 1 : h (singleton p) ps [p] where
       (p:ps) = a178943_list
       h s xs'@(x:xs) ys
         | m > x     = h (s `union` (fromList $ map (* x) (1 : ys))) xs ys
         | otherwise = m : h (s' `union` (fromList $ map (* m) ys')) xs' ys'
         where ys' = m : ys; (m, s') = deleteFindMin s

Formula

Multiplicative closure of A178943; a(n) mod A006562(k) > 0 for all k.

A356858 a(n) is the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 2, 6, 24, 144, 1008, 8064, 72576, 798336, 9580032, 124540416, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 1075443896337615028224, 29036985201115605762048
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Comments

Unlike the factorial number n!, a(n) does not have trailing zeros.

Crossrefs

Cf. A356859 (number of zero digits), A356860 (number of digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Product[Floor[(5k-1)/4], {k,n}], {n,0,22}] (* or *)
    Join[{1}, Table[Floor[(5n-1)/4]!/(Floor[Floor[(5n-1)/4]/5]!*5^Floor[Floor[(5n-1)/4]/5]), {n,22}]]
    Join[{1},FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,30}]]] (* Harvey P. Dale, Nov 03 2024 *)
  • Python
    from math import prod
    def a(n): return prod((5*k-1)//4 for k in range(1, n+1))
    print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = Product_{k=1..n} A047201(k).
a(n) = A047201(n)!/(floor(A047201(n)/5)!*5^floor(A047201(n)/5)) for n > 0.

A217562 Even numbers not divisible by 5.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48, 52, 54, 56, 58, 62, 64, 66, 68, 72, 74, 76, 78, 82, 84, 86, 88, 92, 94, 96, 98, 102, 104, 106, 108, 112, 114, 116, 118, 122, 124, 126, 128, 132
Offset: 1

Views

Author

Jeremy Gardiner, Oct 06 2012

Keywords

Comments

Numbers ending with 2,4,6,8 in base 10.
No term is divisible by 10 therefore a subsequence of A067251 (Numbers with no trailing zeros in decimal representation).
Union of this sequence with A005408 (The odd numbers) gives A067251.
Union of this sequence with A045572 (Numbers that are odd but not divisible by 5) gives A047201.
The even numbers divisible by 5 are A008592 (Multiples of 10).

Crossrefs

Programs

  • BASIC
    for n=1 to 199
    if n mod 5 <> 0 and n mod 2 <> 1 then print str$(n)+", ";
    next n
    print
    
  • Magma
    I:=[2, 4, 6, 8, 12]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..60]]; // Vincenzo Librandi, Dec 28 2012
    
  • Mathematica
    CoefficientList[Series[2*(1 + x + x^2 + x^3 + x^4)/((1 + x)*(1 + x^2)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 28 2012 *)
  • PARI
    A217562(n)=(n-1)*5\2+2 \\ M. F. Hasler, Oct 07 2012
    
  • Python
    def A217562(n): return (5*n-1>>1)&-2 # Chai Wah Wu, Apr 21 2025

Formula

a(n) = 2*A047201(n).
G.f.: 2*x*(1+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 06 2012
a(n) = 2*(n+floor((n-1)/4)). - Aaron J Grech, Sep 28 2024
E.g.f.: (4 - cos(x) + (5*x - 3)*cosh(x) + sin(x) + (5*x - 2)*sinh(x))/2. - Stefano Spezia, Sep 28 2024

A260181 Numbers whose last digit is prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2015

Keywords

Comments

Numbers ending in 2, 3, 5 or 7.
The subsequence of primes is A042993. - Michel Marcus, Jul 19 2015
From Wesley Ivan Hurt, Aug 15 2015, Sep 26 2015: (Start)
Ceiling(a(n)/2) = A047201(n).
Complement of (A197652 Union A262389). (End)

Crossrefs

Cf. A042993, A047201, A092620, subset of A118950.
Union of A017293, A017305, A017329 and A017353.
First differences are [1,2,2,5,...] = A002522(A140081(n-1)).

Programs

  • GAP
    a:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2; List([1..60],n->a(n)); # Muniru A Asiru, Feb 16 2018
  • Magma
    [(5*n-4-(-1)^n+((3-(-1)^n) div 2)*(-1)^((2*n+5-(-1)^n) div 4))/2: n in [1..70]]; // Vincenzo Librandi, Jul 18 2015
    
  • Maple
    A260181:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2: seq(A260181(n), n=1..100);
  • Mathematica
    CoefficientList[Series[(2 + x + 2 x^2 + 2 x^3 + 3 x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 5, 7, 12}, 60] (* Vincenzo Librandi, Jul 18 2015 *)
    Table[(5n - 4 - (-1)^n + ((3 - (-1)^n)/2)*(-1)^((2*n + 5 - (-1)^n)/4))/2, {n, 100}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    is(n)=my(m=digits(n));isprime(m[#m]) \\ Anders Hellström, Jul 19 2015
    
  • PARI
    A260181(n)=(n--)\4*10+prime(n%4+1) \\ is(n)=isprime(n%10) is much more efficient than the above. - M. F. Hasler, Sep 16 2016
    

Formula

G.f.: x*(2+x+2*x^2+2*x^3+3*x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5), n>5.
a(n) = (5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(5*sqrt(5+2*sqrt(5))) - 25*log(5) - 40*log(2) + 5*sqrt(5)*arccoth(843/2))/200. - Amiram Eldar, Jul 30 2024

A356860 a(n) is the number of digits in the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Crossrefs

Cf. A356859 (number of zero digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Length[IntegerDigits[Product[Floor[(5i-1)/4], {i,n}]]], {n,0,68}]
    Join[{1},IntegerLength/@FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,0,100}]]] (* Harvey P. Dale, Jul 20 2025 *)
  • Python
    from math import prod
    def a(n): return len(str(prod((5*k-1)//4 for k in range(1, n+1))))
    print([a(n) for n in range(69)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = A055642(A356858(n)).

A174140 Numbers congruent to k mod 25, where 10 <= k <= 24.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Rick L. Shepherd, Mar 09 2010

Keywords

Comments

Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts includes at least one part of size 10.
For each number the partition is unique.
Complement of A174141.
Amounts in cents requiring at least one dime when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).

Crossrefs

Cf. A174138, A174139, A174141, A047201 (requires at least one part of size 1 (penny)), A008587, A053344 (minimal number of parts), A001299 (number of all such partitions).

Programs

  • Mathematica
    Flatten[Table[Range[10,24]+25n,{n,0,5}]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    Vec(x*(10 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15) / ((1 - x)^2*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)) + O(x^60)) \\ Colin Barker, Oct 25 2019

Formula

a(n+15) = a(n) + 25 for n >= 1.
From Colin Barker, Oct 25 2019: (Start)
G.f.: x*(10 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15) / ((1 - x)^2*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)).
a(n) = a(n-1) + a(n-15) - a(n-16) for n>16.
(End)

A174141 Numbers congruent to k mod 25, where 0 <= k <= 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 150, 151, 152, 153, 154
Offset: 1

Views

Author

Rick L. Shepherd, Mar 09 2010

Keywords

Comments

Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts does not include a part of size 10.
For each number the partition is unique.
Complement of A174140.
Amounts in cents not including a dime when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).

Crossrefs

Cf. A174138, A174139, A174140, A047201 (requires at least one part of size 1 (penny)), A008587, A053344 (minimal number of parts), A001299 (number of all such partitions).

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,7,8,9,25},70] (* Harvey P. Dale, May 30 2014 *)

Formula

a(n+10) = a(n) + 25 for n >= 1.
a(n)= +a(n-1) +a(n-10) -a(n-11). G.f. x^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+16*x^9) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011

A235933 Numbers coprime to 35.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 51, 52, 53, 54, 57, 58, 59, 61, 62, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 96, 97, 99
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 17 2014

Keywords

Comments

The asymptotic density of this sequence is 24/35. - Amiram Eldar, Oct 23 2020

Crossrefs

Cf. A160547 (numbers coprime to 31), A229968 (numbers coprime to 33), A204458 (numbers coprime to 34), A007310 (numbers coprime to 36).
Cf. A045572 (numbers not divisible by 5 or 2), A229829 (numbers not divisible by 5 or 3), A047201 (numbers not divisible by 5), A236207 (numbers not divisible by 5 or 11).

Programs

  • Haskell
    a235933 n = a235933_list !! (n-1)
    a235933_list = filter ((== 1) . gcd 35) [1..]
    -- Reinhard Zumkeller, Mar 27 2014
  • Magma
    [n: n in [1..100] | GCD(n,35) eq 1]; // Bruno Berselli, Mar 27 2014
    
  • Mathematica
    Select[Range[100], GCD[#, 35] == 1 &] (* Bruno Berselli, Mar 27 2014 *)
  • Sage
    [i for i in range(100) if gcd(i, 35) == 1] # Bruno Berselli, Mar 27 2014
    

Extensions

Signature corrected from Georg Fischer, Feb 07 2021
Erroneous recurrence removed from Bruno Berselli, Feb 08 2021
Previous Showing 21-30 of 52 results. Next