Original entry on oeis.org
5, 41, 293, 2057, 14405, 100841, 705893, 4941257, 34588805, 242121641, 1694851493, 11863960457, 83047723205, 581334062441, 4069338437093, 28485369059657, 199397583417605, 1395783083923241, 9770481587462693, 68393371112238857
Offset: 0
A210202
Triangle of coefficients of polynomials v(n,x) jointly generated with A210201; see the Formula section.
Original entry on oeis.org
1, 2, 3, 4, 7, 6, 7, 17, 17, 12, 12, 35, 50, 40, 24, 20, 70, 120, 135, 92, 48, 33, 134, 275, 365, 346, 208, 96, 54, 251, 593, 930, 1033, 856, 464, 192, 88, 461, 1236, 2206, 2874, 2784, 2064, 1024, 384, 143, 835, 2500, 5015, 7389, 8355, 7240, 4880
Offset: 1
First five rows:
1
2....3
4....7....6
7....17...17...12
12...35...50...40...24
First three polynomials v(n,x): 1, 2 + 3x , 4 + 7x + 6x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210201 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210202 *)
A210800
Triangle of coefficients of polynomials v(n,x) jointly generated with A210799; see the Formula section.
Original entry on oeis.org
1, 1, 2, 5, 4, 3, 5, 14, 9, 5, 17, 28, 36, 19, 8, 17, 70, 88, 83, 38, 13, 53, 136, 251, 245, 181, 73, 21, 53, 298, 557, 746, 613, 379, 137, 34, 161, 568, 1376, 1930, 2030, 1439, 769, 252, 55, 161, 1162, 2888, 5026, 5818, 5139, 3221, 1524, 457, 89, 485
Offset: 1
First five rows:
1
1....2
5....4....3
5....14...9....5
17...28...36...19...8
First three polynomials v(n,x): 1, 1 + 2x, 5 + 4x + 3x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 1; c = 1; h = 2; p = -1; f = 0;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210799 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210800 *)
A079362
Sequence of sums of alternating powers of 3.
Original entry on oeis.org
1, 4, 5, 14, 17, 44, 53, 134, 161, 404, 485, 1214, 1457, 3644, 4373, 10934, 13121, 32804, 39365, 98414, 118097, 295244, 354293, 885734, 1062881, 2657204, 3188645, 7971614, 9565937, 23914844, 28697813, 71744534, 86093441, 215233604
Offset: 1
-
a:=[1,4,5];; for n in [4..30] do a[n]:=a[n-1]+3*a[n-2]-3*a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
-
I:=[1,4,5]; [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 07 2019
-
a[1]:=1:a[2]:=4:for n from 3 to 100 do a[n]:=3*a[n-2]+2 od: seq(a[n], n=1..33); # Zerinvary Lajos, Mar 17 2008
-
LinearRecurrence[{1,3,-3},{1,4,5},40] (* Harvey P. Dale, Oct 18 2016 *)
-
a(n)=if(n<1,0,1+sum(k=2,n,3^((k\2)-(k%2))))
-
a(n)=if(n<0,0,(5/3-3*n%2)*2^ceil(n/2)-1)
-
@CachedFunction
def a(n):
if (n==0): return 1
elif (1<=n<=2): return n+3
else: return a(n-1) + 3*a(n-2) - 3*a(n-3)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 07 2019
A198646
a(n) = 11*3^n-1.
Original entry on oeis.org
10, 32, 98, 296, 890, 2672, 8018, 24056, 72170, 216512, 649538, 1948616, 5845850, 17537552, 52612658, 157837976, 473513930, 1420541792, 4261625378, 12784876136, 38354628410, 115063885232, 345191655698, 1035574967096, 3106724901290
Offset: 0
A338486
Numbers n whose symmetric representation of sigma(n) consists of 3 regions with maximum width 2.
Original entry on oeis.org
15, 35, 45, 70, 77, 91, 110, 130, 135, 143, 154, 170, 182, 187, 190, 209, 221, 225, 238, 247, 266, 286, 299, 322, 323, 350, 374, 391, 405, 418, 437, 442, 493, 494, 506, 527, 550, 551, 572, 589, 598, 638, 646, 650, 667, 682, 703, 713, 748, 754, 782, 806, 814, 836, 850
Offset: 1
a(6) = 91 = 7*13 is in the sequence and in the 2-column of the first table since 1 < 2 < 7 < 13 = row(91) representing the 4 odd divisors 1 - 91 - 7 - 13 (see A237048) results in the following pattern for the widths of the legs (see A249223): 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2. It also is in the 1-column of the second table since it has a single area of width 2 which is 1 unit long.
a(29) = 405 = 5*3^4 is in the sequence and in the 5-column of the first table since 1 < 2 < 3 < 5 < 6 < 9 < 10 < 15 < 18 < 27 = row(405) representing the 10 odd divisors 1 - 405 - 3 - 5 - 135 - 9 - 81 - 15 - 45 - 27 results in the following pattern for the widths of the legs: 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 for 3 regions with width not exceeding 2, and 7 = 2*4 - 1 sections of width 2 in the central region.
a(35) = 506 = 2*11*23 is in the sequence since positions 1 < 4 < 11 < 23 < row(506) = 31 representing the 4 odd divisors 1 - 253 - 11 - 23 results in the following pattern for the widths of the legs: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 for 3 regions with width not exceeding 2, with the two outer regions consisting of 3 legs of width 1, and a single area of width 2 in the central region.
Cf.
A001248,
A005030,
A048473,
A082663,
A087718,
A129521,
A196020,
A226755,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A247687,
A249223,
A279102,
A280107,
A280851.
-
(* Functions path and a237270 are defined in A237270 *)
maxDiagonalLength[n_] := Max[Map[#[[1]]-#[[2]]&, Transpose[{Drop[Drop[path[n], 1], -1], path[n-1]}]]]
a338486[m_, n_] := Module[{r, list={}, k}, For[k=m, k<=n, k++, r=a237270[k]; If[Length[r]== 3 && maxDiagonalLength[k]==2,AppendTo[list, k]]]; list]
a338486[1, 850]
A090842
Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).
Original entry on oeis.org
1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0
Rows begin:
1 4 10 22 ...
1 5 17 53 ...
1 6 26 106 ...
1 7 37 187 ...
A102105
a(n) = (19*5^n - 16*3^n + 1) / 4.
Original entry on oeis.org
1, 12, 83, 486, 2645, 13872, 71303, 362346, 1829225, 9198612, 46150523, 231225006, 1157542205, 5791962552, 28972567343, 144901100466, 724620293585, 3623445841692, 18118262329763, 90594411012726, 452981353155365, 2264934660052032, 11324756983085783
Offset: 0
a(4) = 2645 = 9*486 - 23*83 + 15*12 = 9*a(3) - 23*a(2) + 15*a(1).
a(4) = 2645 since M^4 * {1, 1, 1} = {1, 161, 2645}, where 161 = A048473(4).
-
List([0..30], n-> (19*5^n -16*3^n +1)/4); # G. C. Greubel, Oct 27 2019
-
[(19*5^n -16*3^n +1)/4: n in [0..30]]; // G. C. Greubel, Oct 27 2019
-
with(linalg): M[1]:=matrix(3,3,[1,0,0,2,3,0,3,4,5]): for n from 2 to 23 do M[n]:=multiply(M[1],M[n-1]) od: 1,seq(multiply(M[n],matrix(3,1,[1,1,1]))[3,1],n=1..23);
seq((19*5^n -16*3^n +1)/4, n=0..30); # G. C. Greubel, Oct 27 2019
-
Table[(19*5^n -16*3^n +1)/4, {n,0,30}] (* G. C. Greubel, Oct 27 2019 *)
LinearRecurrence[{9,-23,15},{1,12,83},30] (* Harvey P. Dale, Sep 19 2021 *)
-
Vec((1 + 3*x - 2*x^2) / ((1 - x)*(1 - 3*x)*(1 - 5*x)) + O(x^30)) \\ Colin Barker, Mar 03 2017
-
[(19*5^n -16*3^n +1)/4 for n in (0..30)] # G. C. Greubel, Oct 27 2019
A137215
a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
Original entry on oeis.org
3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0
a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
-
Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
-
a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
-
[3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022
A155155
a(n) = 2*(10*3^n - 1).
Original entry on oeis.org
18, 58, 178, 538, 1618, 4858, 14578, 43738, 131218, 393658, 1180978, 3542938, 10628818, 31886458, 95659378, 286978138, 860934418, 2582803258, 7748409778, 23245229338, 69735688018, 209207064058, 627621192178, 1882863576538
Offset: 0
Comments