cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 108 results. Next

A343653 Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2021

Keywords

Comments

First differs from A066620 at a(210) = 36, A066620(210) = 35.

Examples

			The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
  {2,3}  {2,3}  {2,3}  {2,3}    {2,3}  {2,3}    {2,3}  {2,3}
         {3,4}  {3,4}  {2,5}    {2,9}  {2,5}    {2,9}  {3,4}
                {3,8}  {3,5}    {3,4}  {3,4}    {3,4}  {3,8}
                       {5,6}    {4,9}  {3,5}    {3,8}  {3,16}
                       {2,15}          {4,5}    {4,9}  {3,32}
                       {3,10}          {5,6}    {8,9}
                       {2,3,5}         {2,15}
                                       {3,10}
                                       {3,20}
                                       {4,15}
                                       {5,12}
                                       {2,3,5}
                                       {3,4,5}
		

Crossrefs

The case of pairs is A089233.
The version with 1's, empty sets, and singletons is A225520.
The version for subsets of {1..n} is A320426.
The version for strict partitions is A337485.
The version for compositions is A337697.
The version for prime indices is A337984.
The maximal case with 1's is A343652.
The version with empty sets is a(n) + 1.
The version with singletons is A343654(n) - 1.
The version with empty sets and singletons is A343654.
The version with 1's is A343655.
The maximal case is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A343659 counts maximal pairwise coprime subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]],{n,100}]

A343657 Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Examples

			The a(7) = 27 divisors:
  1  32  81  64  25  6  1
     16  27  32  5   3
     8   9   16  1   2
     4   3   8       1
     2   1   4
     1       2
             1
		

Crossrefs

Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.

Programs

  • Mathematica
    Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]

Formula

a(n) = Sum_{k=1..n} A000005(k^(n-k)).

A347149 Dirichlet g.f.: Product_{primes p} (1 + 3/p^s).

Original entry on oeis.org

1, 3, 3, 0, 3, 9, 3, 0, 0, 9, 3, 0, 3, 9, 9, 0, 3, 0, 3, 0, 9, 9, 3, 0, 0, 9, 0, 0, 3, 27, 3, 0, 9, 9, 9, 0, 3, 9, 9, 0, 3, 27, 3, 0, 0, 9, 3, 0, 0, 0, 9, 0, 3, 0, 9, 0, 9, 9, 3, 0, 3, 9, 0, 0, 9, 27, 3, 0, 9, 27, 3, 0, 3, 9, 0, 0, 9, 27, 3, 0, 0, 9, 3, 0, 9, 9, 9, 0, 3, 0, 9, 0, 9, 9, 9, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 3^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 3*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 6*X^2 + 8*X^3 - 3*X^4)/(1 - X)^3)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 6/p^(2*s) + 8/p^(3*s) - 3/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 6/p^(2*s) + 8/p^(3*s) - 3/p^(4*s)), then Sum_{k=1..n} a(k) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2), where f(1) = Product_{primes p} (1 - 6/p^2 + 8/p^3 - 3/p^4) = 0.1148840440802287887292512767015990978487135526872830176248484270625666728..., f'(1) = f(1) * Sum_{primes p} 12*log(p) / ((p-1)*(p+3)) = 0.5497153490016133577871571904347511299324572220423331992393596243955677299..., f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} (-24*p*(p-1) * log(p)^2 / ((p-1)^2 * (p+3)^2)) = 0.9028322988288094236586622799305270026576436536391185119652318723470259904... and gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633).
a(n) = A008966(n) * A048691(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 3, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A360522 a(n) = Sum_{d|n} Max({d'; d'|n, gcd(d, d') = 1}).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 11, 11, 18, 12, 24, 14, 24, 24, 20, 18, 33, 20, 36, 32, 36, 24, 44, 27, 42, 30, 48, 30, 72, 32, 37, 48, 54, 48, 66, 38, 60, 56, 66, 42, 96, 44, 72, 66, 72, 48, 80, 51, 81, 72, 84, 54, 90, 72, 88, 80, 90, 60, 144, 62, 96, 88, 70, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

a(n) is the sum of delta_d(n) over the divisors d of n, where delta_d(n) is the greatest divisor of n that is relatively prime to n.
Denoted by Sur(n) in Khan (2005).
Related sequences: A048691(n) = Sum_{d|n} #{d'; d' | n, gcd(d, d') = 1}, and A328485(n) = Sum_{d|n} Sum_{d' | n, gcd(d, d') = 1} d' (number and sum of divisors instead of maximal divisor, respectively).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e + e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e + e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691 * A065465 = A152649 * A330523 = 0.7250160726810604158... .
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
limsup_{n->oo} sigma(n)/a(n) = oo, where sigma(n) is the sum of divisors of n (A000203) (Khan, 2002).
liminf_{n->oo} a(n)/usigma(n) = 1, where usigma(n) is the sum of unitary divisors of n (A034448) (Khan, 2005).
limsup_{n->oo} a(n)/usigma(n) = (55/54) * Product_{p prime} (1 + 1/(p^2+1)) = 1.4682298236... (Khan, 2005).

A059911 a(n) = |{m : multiplicative order of n mod m = 6}|.

Original entry on oeis.org

0, 3, 10, 16, 37, 10, 42, 24, 58, 53, 164, 26, 68, 38, 32, 68, 169, 22, 222, 38, 42, 50, 328, 40, 180, 219, 108, 26, 334, 82, 460, 82, 92, 72, 220, 108, 449, 86, 128, 80, 192, 22, 336, 110, 222, 218, 540, 84, 778, 129, 150, 80, 270, 54, 328, 356, 132, 68, 348, 22
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{9,21,63}| = 3, a(3) = |{7,14,28,52,56,91,104,182,364,728}| = 10, a(4) = |{13,35,39,45,65,91,105,117,195,273,315,455,585,819,1365,4095}| = 16,...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[{1, -1, -1, 1} * DivisorSigma[0, n^{6, 3, 2, 1} - 1]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025*)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^6-1) - numdiv(n^3-1) - numdiv(n^2-1) + numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^6-1)-tau(n^3-1)-tau(n^2-1)+tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A070920 a(n) = Card{ (x,y,z,u) | lcm(x,y,z,u)=n }.

Original entry on oeis.org

1, 15, 15, 65, 15, 225, 15, 175, 65, 225, 15, 975, 15, 225, 225, 369, 15, 975, 15, 975, 225, 225, 15, 2625, 65, 225, 175, 975, 15, 3375, 15, 671, 225, 225, 225, 4225, 15, 225, 225, 2625, 15, 3375, 15, 975, 975, 225, 15, 5535, 65, 975, 225, 975, 15, 2625, 225
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

Crossrefs

Cf. A000005, A008683, A048691, A070919, A070921, A247516 (Mobius transform).

Programs

  • Mathematica
    Join[{1},Table[Product[(k + 1)^4 - k^4, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,numdiv(d)^4*moebius(n/d)),","))
    
  • PARI
    a(n) = vecprod(apply(x->(x+1)^4-x^4, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = Sum_{d|n} A000005(d)^4*A008683(n/d).
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^4/k^s.
Multiplicative with a(p^e) = (e+1)^4 - e^4. - Amiram Eldar, Sep 03 2023

A070921 a(n) = Card{ (x,y,z,u,v) | lcm(x,y,z,u,v)=n }.

Original entry on oeis.org

1, 31, 31, 211, 31, 961, 31, 781, 211, 961, 31, 6541, 31, 961, 961, 2101, 31, 6541, 31, 6541, 961, 961, 31, 24211, 211, 961, 781, 6541, 31, 29791, 31, 4651, 961, 961, 961, 44521, 31, 961, 961, 24211, 31, 29791, 31, 6541, 6541, 961, 31, 65131, 211, 6541
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

Crossrefs

Cf. A000005, A008683, A048691, A070919, A070920, A247517 (Mobius transform).

Programs

  • Mathematica
    Join[{1},Table[Product[(k + 1)^5 - k^5, {k, FactorInteger[n][[All, 2]]}], {n,2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,numdiv(d)^5*moebius(n/d)),","))
    
  • PARI
    a(n) = vecprod(apply(x->(x+1)^5-x^5, factor(n)[, 2])); \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = Sum_{d|n} A000005(d)^5*A008683(n/d).
Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^5/k^s.
Multiplicative with a(p^e) = (e+1)^5 - e^5. - Amiram Eldar, Sep 03 2023

A086222 a(n) = card{ (x,y,z) | x <= y <= z and lcm(x,y,z) = n }.

Original entry on oeis.org

1, 3, 3, 6, 3, 13, 3, 10, 6, 13, 3, 30, 3, 13, 13, 15, 3, 30, 3, 30, 13, 13, 3, 54, 6, 13, 10, 30, 3, 71, 3, 21, 13, 13, 13, 73, 3, 13, 13, 54, 3, 71, 3, 30, 30, 13, 3, 85, 6, 30, 13, 30, 3, 54, 13, 54, 13, 13, 3, 178, 3, 13, 30, 28, 13, 71, 3, 30, 13, 71, 3, 135, 3, 13, 30, 30, 13, 71, 3
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003

Keywords

Comments

A number of conjectures are possible, many of which should be easy to prove. Examples: (1) If n is a product of two primes then a(n)=13. (2) If n is a square of a prime then a(n)=6. - John W. Layman, Sep 01 2003

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (e+1)^3 - e^3; f2[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + 3 * Times @@ f2 @@@f + 2) / 6; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A048691(n) = numdiv(n^2);
    A070919(n) = sumdiv(n, d, (numdiv(d)^3)*moebius(n/d));
    A086222(n) = ((A070919(n)+3*A048691(n)+2)/6); \\ Antti Karttunen, May 19 2017, after Jovovic's formula.
    
  • PARI
    a(n) = {my(e = factor(n)[, 2]); (vecprod(apply(x->(x+1)^3-x^3, e)) + 3*vecprod(apply(x->2*x+1, e)) + 2) / 6;} \\ Amiram Eldar, Sep 03 2023

Formula

For a prime p, a(p) = 3.
a(n) = (A070919(n) + 3*A048691(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
a(n) = Sum_{d|n} A377304(d)*A008683(n/d). - Ridouane Oudra, May 22 2025
a(n) = A086165(n) + A048691(n). - Ridouane Oudra, Aug 19 2025

Extensions

More terms from John W. Layman, Sep 01 2003

A147810 Half the number of divisors of n^2+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 2, 1, 4, 3, 2, 1, 4, 2, 4, 1, 2, 1, 4, 2, 2, 2, 4, 3, 4, 2, 2, 1, 4, 3, 2, 1, 3, 2, 6, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 1, 4, 1, 8, 2, 2, 2, 2, 2, 4, 2, 2, 1, 4, 4, 2, 3, 2, 4, 8, 1, 4, 2, 4, 2, 2, 2, 4, 3, 8, 1, 2, 2, 4, 2, 4, 1, 4, 2, 6, 1, 2, 2, 4, 4, 6
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2008

Keywords

Comments

For any n>0, n^2+1 cannot be a square and thus has an even number of divisors which always include 1 and n^2+1, therefore a(n) is always a positive integer.
Also number of ways to write n^2+1 as n^2+1 = x*y with 1 <= x <= y. - Michel Lagneau, Mar 10 2014
Also number of ways to write arctan(1/n) = arctan(1/x)+arctan(1/y), for integral 0 < n < x < y. - Matthijs Coster, Dec 09 2014
Number of ways that n can be expressed as (j*k-1)/(j+k) with j >= k > n. For any nonnegative integer n, the equation j*k = 1+n*(j+k) always has at least one integer solution with j >= k > n. As j >= k > n, let k=n+c (c is a positive integer), then j=n+(n^2+1)/c; we can easily conclude that c <= n, i.e., for n > 0, a(n) is the number of divisors of (n^2+1) which are <= n. - Zhining Yang, May 18 2023

Examples

			For n = 7 the a(7) = 3 solutions are (17,12), (32,9), (57,8). For  n = 13 the a(13) = 4 solutions are (30,23), (47,18), (98,15), (183,14). - _Zhining Yang_, May 18 2023
		

Crossrefs

Programs

  • Maple
    with(numtheory); A147810:=n->tau(n^2+1)/2; seq(A147810(n), n=1..100); # Wesley Ivan Hurt, Mar 10 2014
  • Mathematica
    Table[c=0; Do[If[i<=j && i*j==n^2+1, c++], {i, t=Divisors[n^2+1]}, {j, t}]; c, {n, 100}] (* Michel Lagneau, Mar 10 2014 *)
  • PARI
    A147810(n)=numdiv(n^2+1)/2
    
  • Python
    from sympy import divisor_count
    def A147810(n): return divisor_count(n**2+1)>>1 if n else 1 # Chai Wah Wu, Jul 09 2023

Formula

a(n) = A000005(A002522(n))/2 = A147809(n)+1.
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023

A348453 Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= number of divisors of n^2) is the number of ways to tile an n X n chessboard with d_k rook-connected polyominoes of equal area, where d_k is the k-th divisor of n^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 10, 1, 1, 70, 117, 36, 1, 1, 4006, 1, 1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1, 1, 158753814, 1, 7157114189
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2021

Keywords

Comments

The board has n^2 squares. The colors do not matter. The tiles are rook-connected polygons made from n^2/d_k squares.
This is the "labeled" version of the problem. Symmetries of the square are not taken into account. Rotations and reflections count as different.
A348452 displays the same data in a less compact way. The present triangle is obtained by omitting the zero entries from A348452.
The data is taken from A004003, A172477, A348456, and Schutzman & MGGG (2018).
T(8,2) = 7157114189 (see A348456). T(8,3) is presently unknown.

Examples

			The first eight rows of the triangle are:
  1,
  1, 2, 1,
  1, 10, 1,
  1, 70, 117, 36, 1,
  1, 4006, 1,
  1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1,
  1, 158753814, 1,
  1, 7157114189, ?, 187497290034, ?, ?, 1,
  ...
The corresponding divisors d_k are:
  1,
  1, 2, 4,
  1, 3, 9,
  1, 2, 4, 8, 16,
  1, 5, 25,
  ...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
		

Crossrefs

Cf. A348452. A348454 and A348455 are similar triangles with the data in each row reversed.
Cf. A048691 (row lengths).

Formula

A formula for T(n, n^2/2) was found by Kastelyn (see A004003 and A099390). T(n,n) is studied in A172477.

Extensions

T(8,2) added May 04 2022 (see A348456) - N. J. A. Sloane, May 05 2022
Previous Showing 41-50 of 108 results. Next