cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A001814 Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.

Original entry on oeis.org

1, 12, 180, 3360, 75600, 1995840, 60540480, 2075673600, 79394515200, 3352212864000, 154872234316800, 7771770303897600, 420970891461120000, 24481076457277440000, 1521324036987955200000, 100610229646136770560000
Offset: 1

Views

Author

Keywords

Comments

a(n) = A126804(n)/2. - Zerinvary Lajos, Sep 21 2007
a(n) is the number of ways to partition a set of 2n elements into parts of size 2 and then multiply by the number n of parts. - Alain Goupil, Jul 27 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A048854(n, 1) = A067147(2n, 2).
Cf. A001879.
Cf. A005430.

Programs

  • Magma
    [Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
  • Maple
    with(combinat):for n from 1 to 16 do printf(`%d, `,n!/2*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
    a:=n->sum((count(Permutation(n*2+2),size=n+1)),j=0..n)/2: seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
    seq(1/2*mul((n+k), k=1..n), n=0..16); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    Table[(2*n)!/(2*(n-1)!),{n,1,20}] (* Vincenzo Librandi, Nov 22 2011 *)
  • MuPAD
    combinat::catalan(n)*binomial(n+1,2)*n! $ n = 1..16; // Zerinvary Lajos, Feb 15 2007
    

Formula

E.g.f.: x/(1 - 4*x)^(3/2). - corrected by Alain Goupil, Jul 28 2025
a(n) = (2*n)!/(2*(n-1)!).
(n!/2)*binomial(2*n,n)*n or n!/2*A005430. - Zerinvary Lajos, Jun 06 2006
Sum_{n>=0} a(n)*x^(2n)/(2n)! = (x^2/2)*exp(x^2). - Alain Goupil, Jul 28 2025

Extensions

More terms and new description from Christian G. Bower, Dec 18 2001

A060081 Exponential Riordan array (sech(x), tanh(x)).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 5, 0, -14, 0, 1, 0, 61, 0, -30, 0, 1, -61, 0, 331, 0, -55, 0, 1, 0, -1385, 0, 1211, 0, -91, 0, 1, 1385, 0, -12284, 0, 3486, 0, -140, 0, 1, 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1, -50521, 0, 663061
Offset: 0

Views

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Comments

Previous name was: "Triangle of coefficients (lower triangular matrix) of certain (binomial) convolution polynomials related to 1/cosh(x) and tanh(x). Use trigonometric functions for the unsigned version".
Row sums give A009265(n) (signed); A009244(n) (unsigned). Column sequences without interspersed zeros and unsigned: A000364 (Euler), A000364, A060075-8 for m=0,...,5.
a(n,m) = ((-1)^((n-m)/2))*ay(m+1,(n-m)/2) if n-m is even, else 0; where the rectangular array ay(n,m) is defined in A060058 Formula.
The row polynomials p(n,x) appear in a problem of thermo field dynamics (Bogoliubov transformation for the harmonic Bose oscillator). See the link to a .ps.gz file where they are called R_{n}(x).
The inverse of this Sheffer matrix with elements a(n,m) is the Sheffer matrix A060524. This Sheffer triangle appears in the Moyal star product of the harmonic Bose oscillator: x^{*n} = Sum_{m=0..n} a(n,m) x^m with x = 2 (bar a) a/hbar. See the Th. Spernat link, pp. 28, 29, where the unsigned version is used for y=-ix. - Wolfdieter Lang, Jul 22 2005
In the umbral calculus (see Roman reference under A048854) the p(n,x) are called Sheffer for (g(t)=1/cosh(arctanh(t)) = 1/sqrt(1-t^2), f(t)=arctanh(t)).
p(n,x) := Sum_{m=0..n} a(n,m)*x^m, n >= 0, are monic polynomials satisfying p(n,x+y) = Sum_{k=0..n} binomial(n,k)*p(k,x)*q(n-k,y) (binomial, also called exponential, convolution polynomials) with the row polynomials of the associated triangle q(n,x) := Sum_{m=0..n} A111593(n,m)*x^m. E.g.f. for p(n,x) is exp(x*tanh(z))*cosh(z)(signed). [Corrected by Wolfdieter Lang, Sep 12 2005]
Exponential Riordan array [sech(x), tanh(x)]. Unsigned triangle is [sec(x), tan(x)]. - Paul Barry, Jan 10 2011

Examples

			p(3,x) = -5*x + x^3.
Exponential convolution together with A111593 for row polynomials q(n,x), case n=2: -1+(x+y)^2 = p(2,x+y) = 1*p(0,x)*q(2,y) + 2*p(1,x)*q(1,y) + 1*p(2,x)*q(0,y) = 1*1*y^2 + 2*x*y + 1*(-1+x^2)*1.
Triangle begins:
  1,
  0, 1,
  -1, 0, 1,
  0, -5, 0, 1,
  5, 0, -14, 0, 1,
  0, 61, 0, -30, 0, 1,
  -61, 0, 331, 0, -55, 0, 1,
  0, -1385, 0, 1211, 0, -91, 0, 1,
  1385, 0, -12284, 0, 3486, 0, -140, 0, 1,
  0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1,
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1,
  ...
As a right-aligned triangle:
                                                       1;
                                                    0, 1;
                                                -1, 0, 1;
                                           0,   -5, 0, 1;
                                        5, 0,  -14, 0, 1;
                                 0,    61, 0,  -30, 0, 1;
                            -61, 0,   331, 0,  -55, 0, 1;
                     0,   -1385, 0,  1211, 0,  -91, 0, 1;
               1385, 0,  -12284, 0,  3486, 0, -140, 0, 1;
          0,  50521, 0,  -68060, 0,  8526, 0, -204, 0, 1;
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1;
  ...
Production matrix begins
   0,   1;
  -1,   0,   1;
   0,  -4,   0,   1;
   0,   0,  -9,   0,   1;
   0,   0,   0, -16,   0,   1;
   0,   0,   0,   0, -25,   0,   1;
   0,   0,   0,   0,   0, -36,   0,   1;
   0,   0,   0,   0,   0,   0, -49,   0,   1;
   0,   0,   0,   0,   0,   0,   0, -64,   0,   1;
- _Paul Barry_, Jan 10 2011
		

References

  • W. Lang, Two normal ordering problems and certain Sheffer polynomials, in Difference Equations, Special Functions and Orthogonal Polynomials, edts. S. Elaydi et al., World Scientific, 2007, pages 354-368. [From Wolfdieter Lang, Feb 06 2009]

Programs

  • Maple
    riordan := (d,h,n,k) -> coeftayl(d*h^k,x=0,n)*n!/k!:
    A060081 := (n,k) -> riordan(sech(x),tanh(x),n,k):
    seq(print(seq(A060081(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015
  • Mathematica
    max = 12; t = Transpose[ Table[ PadRight[ CoefficientList[ Series[ Tanh[x]^m/m!/Cosh[x], {x, 0, max}], x], max + 1, 0]*Table[k!, {k, 0, max}], {m, 0, max}]]; Flatten[ Table[t[[n, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Sep 29 2011 *)
  • Sage
    def A060081_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)^2*M[n-1,k+1]
        return M
    A060081_triangle(9) # Peter Luschny, Sep 19 2012

Formula

E.g.f. for column m: (((tanh(x))^m)/m!)/cosh(x), m >= 0. Use trigonometric functions for unsigned case.
a(n, m) = a(n-1, m-1)-((m+1)^2)*a(n-1, m+1); a(0, 0)=1; a(n, -1) := 0, a(n, m)=0 if n < m. Use sum of the two recursion terms for unsigned case.
a(n, k) = (1/(k+1)!)*Sum_{q=0..n} C(n,q)*((-1)^(n-q)+1)*((-1)^(q-k)+1)*Sum_{j=0..q-k} C(j+k,k)*(j+k+1)!*2^(q-j-k-2)*(-1)^j*Stirling2(q+1,j+k+1). - Vladimir Kruchinin, Feb 12 2019

Extensions

New name (using a comment from Paul Barry) from Peter Luschny, Apr 15 2015

A067147 Triangle of coefficients for expressing x^n in terms of Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 12, 0, 12, 0, 1, 0, 60, 0, 20, 0, 1, 120, 0, 180, 0, 30, 0, 1, 0, 840, 0, 420, 0, 42, 0, 1, 1680, 0, 3360, 0, 840, 0, 56, 0, 1, 0, 15120, 0, 10080, 0, 1512, 0, 72, 0, 1, 30240, 0, 75600, 0, 25200, 0, 2520, 0, 90, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 03 2002

Keywords

Comments

x^n = (1/2^n) * Sum_{k=0..n} a(n,k)*H_k(x).
These polynomials, H_n(x), are an Appell sequence, whose umbral compositional inverse sequence HI_n(x) consists of the same polynomials signed with the e.g.f. e^{-t^2} e^{xt}. Consequently, under umbral composition H_n(HI.(x)) = x^n = HI_n(H.(x)). Other differently scaled families of Hermite polynomials are A066325, A099174, and A060821. See Griffin et al. for a relation to the Catalan numbers and matrix integration. - Tom Copeland, Dec 27 2020

Examples

			Triangle begins with:
    1;
    0,   1;
    2,   0,   1;
    0,   6,   0,   1;
   12,   0,  12,   0,   1;
    0,  60,   0,  20,   0,   1;
  120,   0, 180,   0,  30,   0,   1;
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. (Table 22.12)

Crossrefs

Row sums give A047974. Columns 0-2: A001813, A000407, A001814. Cf. A048854, A060821.

Programs

  • Magma
    [[Round(Factorial(n)*(1+(-1)^(n+k))/(2*Factorial(k)*Gamma((n-k+2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 09 2018
  • Maple
    T := proc(n, k) (n - k)/2; `if`(%::integer, (n!/k!)/%!, 0) end:
    for n from 0 to 11 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 05 2021
  • Mathematica
    Table[n!*(1+(-1)^(n+k))/(2*k!*Gamma[(n-k+2)/2]), {n,0,20}, {k,0,n}]// Flatten (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    T(n, k) = round(n!*(1+(-1)^(n+k))/(2*k! *gamma((n-k+2)/2)))
    for(n=0,20, for(k=0,n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 09 2018
    
  • PARI
    {T(n,k) = if(k<0 || nMichael Somos, Jan 15 2020 */
    

Formula

E.g.f. (rel to x): A(x, y) = exp(x*y + x^2).
Sum_{ k>=0 } 2^k*k!*T(m, k)*T(n, k) = T(m+n, 0) = |A067994(m+n)|. - Philippe Deléham, Jul 02 2005
T(n, k) = 0 if n-k is odd; T(n, k) = n!/(k!*((n-k)/2)!) if n-k is even. - Philippe Deléham, Jul 02 2005
T(n, k) = n!/(k!*2^((n-k)/2)*((n-k)/2)!)*2^((n+k)/2)*(1+(-1)^(n+k))/2^(k+1).
T(n, k) = A001498((n+k)/2, (n-k)/2)2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1). - Paul Barry, Aug 28 2005
Exponential Riordan array (e^(x^2),x). - Paul Barry, Sep 12 2006
G.f.: 1/(1-x*y-2*x^2/(1-x*y-4*x^2/(1-x*y-6*x^2/(1-x*y-8*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
The n-th row entries may be obtained from D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. - Peter Bala, Dec 07 2011
As noted in the comments this is an Appell sequence of polynomials, so the lowering and raising operators defined by L H_n(x) = n H_{n-1}(x) and R H_{n}(x) = H_{n+1}(x) are L = D_x, the derivative, and R = D_t log[e^{t^2} e^{xt}] |{t = D_x} = x + 2 D_x, and the polynomials may also be generated by e^{-D^2} x^n = H_n(x). - _Tom Copeland, Dec 27 2020

A111593 Triangle of tanh numbers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, 0, -8, 0, 1, 0, 16, 0, -20, 0, 1, 0, 0, 136, 0, -40, 0, 1, 0, -272, 0, 616, 0, -70, 0, 1, 0, 0, -3968, 0, 2016, 0, -112, 0, 1, 0, 7936, 0, -28160, 0, 5376, 0, -168, 0, 1, 0, 0, 176896, 0, -135680, 0, 12432, 0, -240, 0, 1, 0, -353792, 0, 1805056, 0, -508640, 0, 25872
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Sheffer triangle associated to Sheffer triangle A060081.
For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854.
In the umbral calculus (see the S. Roman reference) this triangle would be called associated for (1,arctanh(y)).
Without the n=0 row and m=0 column and unsigned, this is the Jabotinsky triangle A059419.
The inverse matrix of A with elements a(n,m), n,m>=0, is A111594.
The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060081, satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
The row polynomials p(n,x) (defined above) have e.g.f. exp(x*tanh(y)).
Exponential Riordan array [1, tanh(x)], inverse of [1, arctanh(x)] which is A111594. - Paul Barry, May 30 2010
Also the Bell transform of A155585(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			Binomial convolution of row polynomials: p(3,x)= -2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060081:
s(3,x)= -5*x+x^3; s(2,x)= -1+x^2, s(1,x)= x, s(0,x)= 1;
therefore -5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = -2*y+y^3 + 3*x*y^2 + 3*(-1+x^2)*y + (-5*x+x^3).
From _Paul Barry_, May 30 2010: (Start)
Triangle begins:
  1;
  0,     1;
  0,     0,     1;
  0,    -2,     0,     1;
  0,     0,    -8,     0,     1;
  0,    16,     0,   -20,     0,     1;
  0,     0,   136,     0,   -40,     0,     1;
  0,  -272,     0,   616,     0,   -70,     0,     1;
  0,     0, -3968,     0,  2016,     0,  -112,     0,     1;
Production matrix begins:
  0,   1;
  0,   0,   1;
  0,  -2,   0,   1;
  0,   0,  -6,   0,   1;
  0,   0,   0, -12,   0,   1;
  0,   0,   0,   0, -20,   0,   1;
  0,   0,   0,   0,   0, -30,   0,   1;
  0,   0,   0,   0,   0,   0, -42,   0,   1;
  0,   0,   0,   0,   0,   0,   0, -56,   0,   1; (End)
		

Crossrefs

Row sums: A003723. Unsigned row sums: A006229.
Cf. A002378.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> 2^(n+1)*euler(n+1, 1), 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    t[0, 0] = 1; t[n_, m_] := Sum[ Binomial[k+m-1, m-1]*(k+m)!*(-1)^(k)*2^(n-k-m)*StirlingS2[n, k+m], {k, 0, n-m}]/m!; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[2^(#+1)*EulerE[#+1, 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(n-k-m)*stirling2(n,k+m),k,0,n-m)/m!; /* Vladimir Kruchinin, Jun 09 2011 */
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, tanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015

Formula

E.g.f. for column m>=0: ((tanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((tanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) - (m+1)*m*a(n-1, m+1), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n
T(n,m) = (Sum_{k=0..n-m} binomial(k+m-1,m-1)*(k+m)!*(-1)^k*2^(n-k-m)*stirling2(n,k+m))/m!, T(0,0)=1. - Vladimir Kruchinin, Jun 09 2011
With e.g.f. exp(x*tanh(t)) = sum(n>= 0, P(n,x)*t^n/n!), the lowering operator is L = arctanh(d/dx) = d/dx + (1/3)(d/dx)^3 + (1/5)(d/dx)^5 + ..., and the raising operator is R = x [1 - (d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x), since the sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015
The raising operator R = x - x D^2 in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonal (A002378) comes from -x D^2 x^n = -n * (n-1) x^(n-1). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T. - Tom Copeland, Aug 17 2016

A304334 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/k!, triangle read by rows, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 6, 0, 1, 30, 60, 0, 1, 126, 840, 840, 0, 1, 510, 8820, 25200, 15120, 0, 1, 2046, 84480, 526680, 831600, 332640, 0, 1, 8190, 780780, 9609600, 30270240, 30270240, 8648640, 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
Offset: 0

Author

Peter Luschny, May 11 2018

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1,     6
[3] 0, 1,    30,      60
[4] 0, 1,   126,     840,       840
[5] 0, 1,   510,    8820,     25200,     15120
[6] 0, 1,  2046,   84480,    526680,    831600,     332640
[7] 0, 1,  8190,  780780,   9609600,  30270240,   30270240,    8648640
[8] 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
		

Crossrefs

Row sums are bisection of A081562, T(n,n) ~ A000407, T(n,n-1) ~ A048854(n,2), T(n,2) ~ A002446.

Programs

  • Maple
    A304334 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/k!:
    for n from 0 to 8 do seq(A304334(n, k), k=0..n) od;
  • PARI
    T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/k!;
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018

Formula

T(n, k) = A304330(n, k) / k!.

A051523 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -10, 1, 110, -21, 1, -1320, 362, -33, 1, 17160, -6026, 791, -46, 1, -240240, 101524, -17100, 1435, -60, 1, 3603600, -1763100, 358024, -38625, 2335, -75, 1, -57657600, 31813200, -7491484, 976024, -75985, 3535, -91, 1, 980179200, -598482000, 159168428, -24083892, 2267769, -136080, 5082, -108, 1
Offset: 0

Keywords

Comments

a(n,m)= ^10P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(10+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(10*t),exp(t)-1).

Examples

			{1}; {-10,1}; {110,-21,1}; {-1320,362,-331}; ... s(2,x)= 110-21*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
		

Crossrefs

The first (m=0) unsigned column sequence is A049398. Row sums (signed triangle): A049389(n)*(-1)^n. Row sums (unsigned triangle): A051431(n).

Programs

  • Haskell
    a051523 n k = a051523_tabl !! n !! k
    a051523_row n = a051523_tabl !! n
    a051523_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 10)
    -- Reinhard Zumkeller, Mar 12 2014
  • Mathematica
    a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^10, {x, 0, n}];
    Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n, m)= a(n-1, m-1) - (n+9)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^10).
Triangle (signed) = [ -10, -1, -11, -2, -12, -3, -13, -14, -4, ...] DELTA A000035; triangle (unsigned) = [10, 1, 11, 2, 12, 3, 13, 4, 14, 5, 15, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,10), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A292219 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,3].

Original entry on oeis.org

1, 6, 1, 60, 20, 1, 840, 420, 42, 1, 15120, 10080, 1512, 72, 1, 332640, 277200, 55440, 3960, 110, 1, 8648640, 8648640, 2162160, 205920, 8580, 156, 1, 259459200, 302702400, 90810720, 10810800, 600600, 16380, 210, 1, 8821612800, 11762150400, 4116752640, 588107520, 40840800, 1485120, 28560, 272, 1
Offset: 0

Author

Wolfdieter Lang, Sep 23 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,3], the Sheffer triangle ((1 - 4*t)^(-3/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,3](x, n) = Sum_{m=0..n} L[4,3](n, m)*fallfac[4,3](x, m), where risefac[4,3](x, n) := Product_{0..n-1} (x + (3 + 4*j)) for n >= 1 and risefac[4,3](x, 0) := 1, and fallfac[4,3](x, n):= Product_{0..n-1} (x - (3 + 4*j)) for n >= 1 and fallfac[4,3](x, 0) := 1.
In matrix notation: L[4,3] = S1phat[4,3]*S2hat[4,3] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225471 and A225469, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-3/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292221(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,3] is Sheffer ((1 + 4*t)^(-3/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,3](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,3](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A103327(d, m)*x^m/(1 - x)^(2*d + 1), for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(m + d) + 1, 2*d)}{m >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
  n\m          0           1          2         3        4       5     6   7  8
  0:           1
  1:           6           1
  2:          60          20          1
  3:         840         420         42         1
  4:       15120       10080       1512        72        1
  5:      332640      277200      55440      3960      110       1
  6:     8648640     8648640    2162160    205920     8580     156     1
  7:   259459200   302702400   90810720  10810800   600600   16380   210   1
  8:  8821612800 11762150400 4116752640 588107520 40840800 1485120 28560 272  1
  ...
Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 4*4*T(3, 2) = 2*420 + 16*42 = 1512.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(6*840 - 6*420 + 40*42 -420*1) = 15120.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(60 + 20*x + 1*x^2 ) = (20 + 2*x) - 4*2 = 2*(6 + x).
Sheffer recurrence for R(3, x): [(6 + x) + 8*(3 + x)*D_x + 16*x*(D_x)^2] (60 + 20*x + 1*x^2) = (6 + x)*(60 + 20*x + x^2) + 8*(3 + x)*(20 + 2*x) + 16*2*x = 840 + 420*x + 42*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (2*4!/2)*(3 + 2*2)*(1*42/3! + 4*1/2!) = 1512.
Diagonal sequence d = 2: {60, 420, 1512, ...} has o.g.f. 12*(5 + 10*x + x^2)/(1 - x)^5 (see A001813(2) and row n=2 of A103327) generating {12*binomial(2*(m + 2) + 1, 4)}_{m >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A225469, A225471, A271703 L[1,0], A286724 L[2,1], A290596 L[3,1], A290597 L[3,2], A048854 L[4,1], A292221, A103327,
Diagonal sequences: A000012, 2*A014105(m+1), 12*A053126(m+4), 120*A053128(m+6), A053130(n+8), ... - Wolfdieter Lang, Oct 12 2017

Formula

T(n, m) = L[4,3](n,m) = Sum_{k=m..n} A225471(n, k)*A225469(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-3/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-3/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries k >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and z(j) = 2*A292221(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 1)*T(n-1, m) - 8*(n-1)*(2*n - 1)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(6 + x)*1 + 8*(3 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (2*n!/(n-m))*(3 + 2*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n + 1, 2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

A292220 Expansion of the exponential generating function (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.

Original entry on oeis.org

1, 1, -4, 30, -336, 5040, -95040, 2162160, -57657600, 1764322560, -60949324800, 2346549004800, -99638080819200, 4626053752320000, -233153109116928000, 12677700308232960000, -739781100339240960000, 46113021921146019840000, -3058021453718104473600000
Offset: 0

Author

Wolfdieter Lang, Sep 13 2017

Keywords

Comments

This gives one half of the z-sequence entries for the generalized unsigned Lah number Sheffer matrix Lah[4,1] = A048854.
For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link for a proof.

Examples

			The sequence z(4,1;n) = 2*a(n) begins: {2,2,-8,60,-672,10080,-190080,4324320,-115315200,3528645120,-121898649600,...}.
		

Crossrefs

Cf. A001147, A006232 (link), A048854, A292221 (z[4,3]/2).

Programs

  • Maple
    f:= gfun:-rectoproc({a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n),a(0)=1,a(1)=1},a(n),remember):
    map(f, [$0..30]); # Robert Israel, May 10 2020
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/2 (1+4x) (1-(1+4x)^(-1/2))/x,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 01 2021 *)

Formula

a(n) = [x^n/n!] (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.
a(0) = 1, a(n) = -(-2)^n*Product_{j=1..n} (2*j - 1)/(n+1) = -((-2)^n/(n+1))*A001147(n), n >= 1.
a(n) ~ -(-1)^n * n^(n-1) * 2^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Sep 18 2017
a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n) for n >= 1. - Robert Israel, May 10 2020

A113216 Triangle of polynomials P(n,x) of degree n related to Pi (see comment) and derived from Padé approximation to exp(x).

Original entry on oeis.org

1, 1, 2, 1, -6, -12, 1, 12, -60, -120, 1, -20, -180, 840, 1680, 1, 30, -420, -3360, 15120, 30240, 1, -42, -840, 10080, 75600, -332640, -665280, 1, 56, -1512, -25200, 277200, 1995840, -8648640, -17297280, 1, -72, -2520, 55440, 831600, -8648640, -60540480, 259459200, 518918400, 1, 90, -3960, -110880
Offset: 0

Author

Benoit Cloitre, Jan 07 2006

Keywords

Comments

P(n,x) is a sequence of polynomials of degree n with integer coefficients, having exactly n real roots, such that r(n) the smallest root (in absolute value) converges quickly to Pi/2. e.g. the appropriate root for P(5,x) is r(5)=1.5707963(4026....) . To see the rapidity of convergence it is relevant noting that (r(n)-Pi/2)(2n)! -->0 as n grows.

Examples

			P(5,x) = x^5 + 30*x^4 - 420*x^3 - 3360*x^2 + 15120*x + 30240.
Triangle begins:
1;
1,2;
1,-6,-12;
1,12,-60,-120;
1,-20,-180,840,1680;
1,30,-420,-3360,15120,30240;
1,-42,-840,10080,75600,-332640,-665280;
...
		

Crossrefs

Cf. A113025 (unsigned variant), A048854, A059344, A119274.

Programs

  • PARI
    P(n,x)=if(n<2,if(n%2,x+2,1),(4*n-2)*P(n-1,x)-x^2*P(n-2,x))
    
  • PARI
    P(n,x)=sum(i=0,n,x^i*(-1)^floor(i/2)/(n-i)!/i!*(2*n-i)!)

Formula

P(0, x) = 1, P(1, x) = x+2, P(n, x) = (4*n-2)*P(n-1, x)-x^2*P(n-2, x).
P(n, x) = Sum_{0<=i<=n} (-1)^floor(i/2)*(2n-i)!/i!/(n-i)!*x^i.
Previous Showing 21-29 of 29 results.